Properties

Label 4-170e2-1.1-c1e2-0-11
Degree $4$
Conductor $28900$
Sign $1$
Analytic cond. $1.84268$
Root an. cond. $1.16509$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 4·3-s + 3·4-s − 8·6-s + 4·7-s − 4·8-s + 7·9-s − 4·11-s + 12·12-s + 2·13-s − 8·14-s + 5·16-s − 14·18-s + 2·19-s + 16·21-s + 8·22-s − 16·24-s + 25-s − 4·26-s + 4·27-s + 12·28-s − 4·31-s − 6·32-s − 16·33-s + 21·36-s − 12·37-s − 4·38-s + ⋯
L(s)  = 1  − 1.41·2-s + 2.30·3-s + 3/2·4-s − 3.26·6-s + 1.51·7-s − 1.41·8-s + 7/3·9-s − 1.20·11-s + 3.46·12-s + 0.554·13-s − 2.13·14-s + 5/4·16-s − 3.29·18-s + 0.458·19-s + 3.49·21-s + 1.70·22-s − 3.26·24-s + 1/5·25-s − 0.784·26-s + 0.769·27-s + 2.26·28-s − 0.718·31-s − 1.06·32-s − 2.78·33-s + 7/2·36-s − 1.97·37-s − 0.648·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 28900 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 28900 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(28900\)    =    \(2^{2} \cdot 5^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(1.84268\)
Root analytic conductor: \(1.16509\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 28900,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.482590443\)
\(L(\frac12)\) \(\approx\) \(1.482590443\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
17$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good3$C_2$$\times$$C_2$ \( ( 1 - p T + p T^{2} )( 1 - T + p T^{2} ) \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
11$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
19$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + T + p T^{2} ) \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
31$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
47$C_2$$\times$$C_2$ \( ( 1 + 9 T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
53$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
59$C_2$$\times$$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 - 3 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 - 3 T + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \)
83$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + p T^{2} ) \)
89$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.4802893459, −14.7042188078, −14.5856217610, −14.0366072852, −13.8085645982, −12.8899956802, −12.8337363923, −11.7739202135, −11.3100228916, −10.9484142878, −10.3636633894, −9.67317537122, −9.47750402875, −8.69848461419, −8.33817548631, −8.04714878525, −7.95836653673, −7.12227398289, −6.57312904075, −5.32145208242, −4.92015064778, −3.40344370945, −3.29460314858, −2.08881038737, −1.79579054759, 1.79579054759, 2.08881038737, 3.29460314858, 3.40344370945, 4.92015064778, 5.32145208242, 6.57312904075, 7.12227398289, 7.95836653673, 8.04714878525, 8.33817548631, 8.69848461419, 9.47750402875, 9.67317537122, 10.3636633894, 10.9484142878, 11.3100228916, 11.7739202135, 12.8337363923, 12.8899956802, 13.8085645982, 14.0366072852, 14.5856217610, 14.7042188078, 15.4802893459

Graph of the $Z$-function along the critical line