L(s) = 1 | − 2·2-s + 4·3-s + 3·4-s − 8·6-s + 4·7-s − 4·8-s + 7·9-s − 4·11-s + 12·12-s + 2·13-s − 8·14-s + 5·16-s − 14·18-s + 2·19-s + 16·21-s + 8·22-s − 16·24-s + 25-s − 4·26-s + 4·27-s + 12·28-s − 4·31-s − 6·32-s − 16·33-s + 21·36-s − 12·37-s − 4·38-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 2.30·3-s + 3/2·4-s − 3.26·6-s + 1.51·7-s − 1.41·8-s + 7/3·9-s − 1.20·11-s + 3.46·12-s + 0.554·13-s − 2.13·14-s + 5/4·16-s − 3.29·18-s + 0.458·19-s + 3.49·21-s + 1.70·22-s − 3.26·24-s + 1/5·25-s − 0.784·26-s + 0.769·27-s + 2.26·28-s − 0.718·31-s − 1.06·32-s − 2.78·33-s + 7/2·36-s − 1.97·37-s − 0.648·38-s + ⋯ |
Λ(s)=(=(28900s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(28900s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
28900
= 22⋅52⋅172
|
Sign: |
1
|
Analytic conductor: |
1.84268 |
Root analytic conductor: |
1.16509 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 28900, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.482590443 |
L(21) |
≈ |
1.482590443 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1+T)2 |
| 5 | C1×C1 | (1−T)(1+T) |
| 17 | C1×C1 | (1−T)(1+T) |
good | 3 | C2×C2 | (1−pT+pT2)(1−T+pT2) |
| 7 | C2 | (1−2T+pT2)2 |
| 11 | C2×C2 | (1+pT2)(1+4T+pT2) |
| 13 | C2×C2 | (1−5T+pT2)(1+3T+pT2) |
| 19 | C2×C2 | (1−3T+pT2)(1+T+pT2) |
| 23 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 29 | C2 | (1−9T+pT2)(1+9T+pT2) |
| 31 | C2×C2 | (1+T+pT2)(1+3T+pT2) |
| 37 | C2×C2 | (1+4T+pT2)(1+8T+pT2) |
| 41 | C2 | (1+6T+pT2)2 |
| 43 | C2×C2 | (1−6T+pT2)(1−2T+pT2) |
| 47 | C2×C2 | (1+9T+pT2)(1+13T+pT2) |
| 53 | C2 | (1+9T+pT2)2 |
| 59 | C2×C2 | (1−15T+pT2)(1−3T+pT2) |
| 61 | C2 | (1−7T+pT2)(1+7T+pT2) |
| 67 | C2×C2 | (1−14T+pT2)(1+2T+pT2) |
| 71 | C2×C2 | (1−9T+pT2)(1−3T+pT2) |
| 73 | C2×C2 | (1−11T+pT2)(1+3T+pT2) |
| 79 | C2×C2 | (1−8T+pT2)(1+pT2) |
| 83 | C2×C2 | (1−12T+pT2)(1+pT2) |
| 89 | C2 | (1+9T+pT2)2 |
| 97 | C2 | (1−7T+pT2)(1+7T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.4802893459, −14.7042188078, −14.5856217610, −14.0366072852, −13.8085645982, −12.8899956802, −12.8337363923, −11.7739202135, −11.3100228916, −10.9484142878, −10.3636633894, −9.67317537122, −9.47750402875, −8.69848461419, −8.33817548631, −8.04714878525, −7.95836653673, −7.12227398289, −6.57312904075, −5.32145208242, −4.92015064778, −3.40344370945, −3.29460314858, −2.08881038737, −1.79579054759,
1.79579054759, 2.08881038737, 3.29460314858, 3.40344370945, 4.92015064778, 5.32145208242, 6.57312904075, 7.12227398289, 7.95836653673, 8.04714878525, 8.33817548631, 8.69848461419, 9.47750402875, 9.67317537122, 10.3636633894, 10.9484142878, 11.3100228916, 11.7739202135, 12.8337363923, 12.8899956802, 13.8085645982, 14.0366072852, 14.5856217610, 14.7042188078, 15.4802893459