Properties

Label 4-170e2-1.1-c1e2-0-16
Degree $4$
Conductor $28900$
Sign $1$
Analytic cond. $1.84268$
Root an. cond. $1.16509$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 2·3-s − 3·5-s + 2·6-s − 4·7-s + 8-s − 3·9-s + 3·10-s − 3·11-s + 4·14-s + 6·15-s − 16-s − 6·17-s + 3·18-s − 5·19-s + 8·21-s + 3·22-s − 2·24-s + 4·25-s + 14·27-s + 3·29-s − 6·30-s − 9·31-s + 6·33-s + 6·34-s + 12·35-s + 8·37-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.15·3-s − 1.34·5-s + 0.816·6-s − 1.51·7-s + 0.353·8-s − 9-s + 0.948·10-s − 0.904·11-s + 1.06·14-s + 1.54·15-s − 1/4·16-s − 1.45·17-s + 0.707·18-s − 1.14·19-s + 1.74·21-s + 0.639·22-s − 0.408·24-s + 4/5·25-s + 2.69·27-s + 0.557·29-s − 1.09·30-s − 1.61·31-s + 1.04·33-s + 1.02·34-s + 2.02·35-s + 1.31·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 28900 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 28900 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(28900\)    =    \(2^{2} \cdot 5^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(1.84268\)
Root analytic conductor: \(1.16509\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 28900,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T + T^{2} \)
5$C_2$ \( 1 + 3 T + p T^{2} \)
17$C_2$ \( 1 + 6 T + p T^{2} \)
good3$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
11$D_{4}$ \( 1 + 3 T + 7 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 19 T^{2} + p^{2} T^{4} \)
19$D_{4}$ \( 1 + 5 T + 33 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
23$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
29$D_{4}$ \( 1 - 3 T - 2 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
31$C_2^2$ \( 1 + 9 T + 58 T^{2} + 9 p T^{3} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$D_{4}$ \( 1 + 9 T + 67 T^{2} + 9 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 - 9 T + 61 T^{2} - 9 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 + 6 T + 7 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 44 T^{2} + p^{2} T^{4} \)
59$D_{4}$ \( 1 - 3 T + 19 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 + 6 T + p T^{2} + 6 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 + 15 T + 121 T^{2} + 15 p T^{3} + p^{2} T^{4} \)
71$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 15 T + p T^{2} ) \)
73$D_{4}$ \( 1 - 2 T - 60 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
79$C_2^2$ \( 1 + 67 T^{2} + p^{2} T^{4} \)
83$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$D_{4}$ \( 1 + 15 T + 196 T^{2} + 15 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + T - 105 T^{2} + p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.0221711185, −15.5342970694, −14.9897584332, −14.6635859038, −13.8099113219, −13.2907075077, −12.8523853416, −12.4418385025, −11.9521338934, −11.3387256738, −11.0645280668, −10.6807001131, −10.1971453750, −9.45577863031, −8.77312346071, −8.61883253709, −7.95635897687, −7.25503634354, −6.73099839433, −6.12036715031, −5.72019169432, −4.78117523089, −4.24511295137, −3.26424045735, −2.58974577135, 0, 0, 2.58974577135, 3.26424045735, 4.24511295137, 4.78117523089, 5.72019169432, 6.12036715031, 6.73099839433, 7.25503634354, 7.95635897687, 8.61883253709, 8.77312346071, 9.45577863031, 10.1971453750, 10.6807001131, 11.0645280668, 11.3387256738, 11.9521338934, 12.4418385025, 12.8523853416, 13.2907075077, 13.8099113219, 14.6635859038, 14.9897584332, 15.5342970694, 16.0221711185

Graph of the $Z$-function along the critical line