L(s) = 1 | − 2-s − 2·3-s − 3·5-s + 2·6-s − 4·7-s + 8-s − 3·9-s + 3·10-s − 3·11-s + 4·14-s + 6·15-s − 16-s − 6·17-s + 3·18-s − 5·19-s + 8·21-s + 3·22-s − 2·24-s + 4·25-s + 14·27-s + 3·29-s − 6·30-s − 9·31-s + 6·33-s + 6·34-s + 12·35-s + 8·37-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1.15·3-s − 1.34·5-s + 0.816·6-s − 1.51·7-s + 0.353·8-s − 9-s + 0.948·10-s − 0.904·11-s + 1.06·14-s + 1.54·15-s − 1/4·16-s − 1.45·17-s + 0.707·18-s − 1.14·19-s + 1.74·21-s + 0.639·22-s − 0.408·24-s + 4/5·25-s + 2.69·27-s + 0.557·29-s − 1.09·30-s − 1.61·31-s + 1.04·33-s + 1.02·34-s + 2.02·35-s + 1.31·37-s + ⋯ |
Λ(s)=(=(28900s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(28900s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
28900
= 22⋅52⋅172
|
Sign: |
1
|
Analytic conductor: |
1.84268 |
Root analytic conductor: |
1.16509 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 28900, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T+T2 |
| 5 | C2 | 1+3T+pT2 |
| 17 | C2 | 1+6T+pT2 |
good | 3 | C2 | (1+T+pT2)2 |
| 7 | C2 | (1−T+pT2)(1+5T+pT2) |
| 11 | D4 | 1+3T+7T2+3pT3+p2T4 |
| 13 | C22 | 1+19T2+p2T4 |
| 19 | D4 | 1+5T+33T2+5pT3+p2T4 |
| 23 | C2 | (1−9T+pT2)(1+9T+pT2) |
| 29 | D4 | 1−3T−2T2−3pT3+p2T4 |
| 31 | C22 | 1+9T+58T2+9pT3+p2T4 |
| 37 | C2×C2 | (1−10T+pT2)(1+2T+pT2) |
| 41 | D4 | 1+9T+67T2+9pT3+p2T4 |
| 43 | D4 | 1−9T+61T2−9pT3+p2T4 |
| 47 | D4 | 1+6T+7T2+6pT3+p2T4 |
| 53 | C22 | 1−44T2+p2T4 |
| 59 | D4 | 1−3T+19T2−3pT3+p2T4 |
| 61 | D4 | 1+6T+pT2+6pT3+p2T4 |
| 67 | D4 | 1+15T+121T2+15pT3+p2T4 |
| 71 | C2×C2 | (1+pT2)(1+15T+pT2) |
| 73 | D4 | 1−2T−60T2−2pT3+p2T4 |
| 79 | C22 | 1+67T2+p2T4 |
| 83 | C2×C2 | (1−9T+pT2)(1+12T+pT2) |
| 89 | D4 | 1+15T+196T2+15pT3+p2T4 |
| 97 | D4 | 1+T−105T2+pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−16.0221711185, −15.5342970694, −14.9897584332, −14.6635859038, −13.8099113219, −13.2907075077, −12.8523853416, −12.4418385025, −11.9521338934, −11.3387256738, −11.0645280668, −10.6807001131, −10.1971453750, −9.45577863031, −8.77312346071, −8.61883253709, −7.95635897687, −7.25503634354, −6.73099839433, −6.12036715031, −5.72019169432, −4.78117523089, −4.24511295137, −3.26424045735, −2.58974577135, 0, 0,
2.58974577135, 3.26424045735, 4.24511295137, 4.78117523089, 5.72019169432, 6.12036715031, 6.73099839433, 7.25503634354, 7.95635897687, 8.61883253709, 8.77312346071, 9.45577863031, 10.1971453750, 10.6807001131, 11.0645280668, 11.3387256738, 11.9521338934, 12.4418385025, 12.8523853416, 13.2907075077, 13.8099113219, 14.6635859038, 14.9897584332, 15.5342970694, 16.0221711185