L(s) = 1 | + 2·2-s + 3·4-s + 2·5-s + 4·7-s + 4·8-s + 4·10-s + 4·13-s + 8·14-s + 5·16-s + 2·19-s + 6·20-s + 3·25-s + 8·26-s + 12·28-s + 4·31-s + 6·32-s + 8·35-s + 4·37-s + 4·38-s + 8·40-s + 4·43-s − 2·49-s + 6·50-s + 12·52-s − 12·53-s + 16·56-s + 4·61-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 3/2·4-s + 0.894·5-s + 1.51·7-s + 1.41·8-s + 1.26·10-s + 1.10·13-s + 2.13·14-s + 5/4·16-s + 0.458·19-s + 1.34·20-s + 3/5·25-s + 1.56·26-s + 2.26·28-s + 0.718·31-s + 1.06·32-s + 1.35·35-s + 0.657·37-s + 0.648·38-s + 1.26·40-s + 0.609·43-s − 2/7·49-s + 0.848·50-s + 1.66·52-s − 1.64·53-s + 2.13·56-s + 0.512·61-s + ⋯ |
Λ(s)=(=(2924100s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(2924100s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
2924100
= 22⋅34⋅52⋅192
|
Sign: |
1
|
Analytic conductor: |
186.443 |
Root analytic conductor: |
3.69518 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 2924100, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
11.14294629 |
L(21) |
≈ |
11.14294629 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1−T)2 |
| 3 | | 1 |
| 5 | C1 | (1−T)2 |
| 19 | C1 | (1−T)2 |
good | 7 | C2 | (1−2T+pT2)2 |
| 11 | C22 | 1+10T2+p2T4 |
| 13 | D4 | 1−4T+18T2−4pT3+p2T4 |
| 17 | C22 | 1+22T2+p2T4 |
| 23 | C22 | 1−2T2+p2T4 |
| 29 | C22 | 1+46T2+p2T4 |
| 31 | D4 | 1−4T+54T2−4pT3+p2T4 |
| 37 | D4 | 1−4T+66T2−4pT3+p2T4 |
| 41 | C2 | (1+pT2)2 |
| 43 | D4 | 1−4T+78T2−4pT3+p2T4 |
| 47 | C22 | 1+46T2+p2T4 |
| 53 | D4 | 1+12T+94T2+12pT3+p2T4 |
| 59 | C22 | 1+106T2+p2T4 |
| 61 | C2 | (1−2T+pT2)2 |
| 67 | D4 | 1−16T+150T2−16pT3+p2T4 |
| 71 | C22 | 1+94T2+p2T4 |
| 73 | D4 | 1−4T+102T2−4pT3+p2T4 |
| 79 | D4 | 1−4T+150T2−4pT3+p2T4 |
| 83 | D4 | 1+12T+190T2+12pT3+p2T4 |
| 89 | C22 | 1+130T2+p2T4 |
| 97 | D4 | 1−16T+150T2−16pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.572102116122105973925851014545, −9.215396895388497294359717706153, −8.505486021083172175158181775082, −8.358481985376727830261517178709, −7.75395437650156839668117403755, −7.71851644262336002436865439342, −6.78250190868645198460136723582, −6.75375601368792312579748989962, −6.02217355508734028869513452271, −5.98342385044188577388055379982, −5.22677938315602569812568055562, −5.17957824185817504360742572966, −4.51618609295393231917184584628, −4.37743777981621570503957637080, −3.52087112438395697347711270639, −3.37230508288646908882310828362, −2.41080308782883156323643119888, −2.29752280015848155476774902238, −1.31873407300452199612511982994, −1.26220932573151456838490135346,
1.26220932573151456838490135346, 1.31873407300452199612511982994, 2.29752280015848155476774902238, 2.41080308782883156323643119888, 3.37230508288646908882310828362, 3.52087112438395697347711270639, 4.37743777981621570503957637080, 4.51618609295393231917184584628, 5.17957824185817504360742572966, 5.22677938315602569812568055562, 5.98342385044188577388055379982, 6.02217355508734028869513452271, 6.75375601368792312579748989962, 6.78250190868645198460136723582, 7.71851644262336002436865439342, 7.75395437650156839668117403755, 8.358481985376727830261517178709, 8.505486021083172175158181775082, 9.215396895388497294359717706153, 9.572102116122105973925851014545