L(s) = 1 | + 4·2-s + 12·4-s + 10·5-s − 24·7-s + 32·8-s + 40·10-s − 24·11-s − 76·13-s − 96·14-s + 80·16-s + 84·17-s − 38·19-s + 120·20-s − 96·22-s + 136·23-s + 75·25-s − 304·26-s − 288·28-s + 20·29-s − 128·31-s + 192·32-s + 336·34-s − 240·35-s − 188·37-s − 152·38-s + 320·40-s − 188·41-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 3/2·4-s + 0.894·5-s − 1.29·7-s + 1.41·8-s + 1.26·10-s − 0.657·11-s − 1.62·13-s − 1.83·14-s + 5/4·16-s + 1.19·17-s − 0.458·19-s + 1.34·20-s − 0.930·22-s + 1.23·23-s + 3/5·25-s − 2.29·26-s − 1.94·28-s + 0.128·29-s − 0.741·31-s + 1.06·32-s + 1.69·34-s − 1.15·35-s − 0.835·37-s − 0.648·38-s + 1.26·40-s − 0.716·41-s + ⋯ |
Λ(s)=(=(2924100s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(2924100s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
2924100
= 22⋅34⋅52⋅192
|
Sign: |
1
|
Analytic conductor: |
10179.4 |
Root analytic conductor: |
10.0445 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 2924100, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1−pT)2 |
| 3 | | 1 |
| 5 | C1 | (1−pT)2 |
| 19 | C1 | (1+pT)2 |
good | 7 | D4 | 1+24T+598T2+24p3T3+p6T4 |
| 11 | D4 | 1+24T+718T2+24p3T3+p6T4 |
| 13 | D4 | 1+76T+5606T2+76p3T3+p6T4 |
| 17 | D4 | 1−84T+10662T2−84p3T3+p6T4 |
| 23 | D4 | 1−136T+25246T2−136p3T3+p6T4 |
| 29 | D4 | 1−20T+46790T2−20p3T3+p6T4 |
| 31 | D4 | 1+128T+59966T2+128p3T3+p6T4 |
| 37 | D4 | 1+188T+1566pT2+188p3T3+p6T4 |
| 41 | D4 | 1+188T+144590T2+188p3T3+p6T4 |
| 43 | D4 | 1+328T+118862T2+328p3T3+p6T4 |
| 47 | D4 | 1+120T+177838T2+120p3T3+p6T4 |
| 53 | D4 | 1+300T+19582T2+300p3T3+p6T4 |
| 59 | D4 | 1+656T+217670T2+656p3T3+p6T4 |
| 61 | D4 | 1+436T+408686T2+436p3T3+p6T4 |
| 67 | D4 | 1+728T+688550T2+728p3T3+p6T4 |
| 71 | D4 | 1+624T+679534T2+624p3T3+p6T4 |
| 73 | D4 | 1+284T+797270T2+284p3T3+p6T4 |
| 79 | D4 | 1−128T−280258T2−128p3T3+p6T4 |
| 83 | D4 | 1+1712T+1816918T2+1712p3T3+p6T4 |
| 89 | D4 | 1+1356T+1841550T2+1356p3T3+p6T4 |
| 97 | D4 | 1−788T+1551614T2−788p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.741056859997855473423931196681, −8.405893146272842788303624674398, −7.71718961459527953971850953805, −7.40785290704074470425158174299, −6.89618750774710624663477750526, −6.88273685644190864594313057689, −6.07668786870420372063425359208, −6.01718236853581306114667825625, −5.42806126622887706801604154001, −5.08291140507087395904824827905, −4.76593292222870250329319112974, −4.34513324285721521640920912394, −3.40979821303556915461579134194, −3.31532923697428172217110536540, −2.72179871476417919643837523251, −2.61733473599412061525438083058, −1.57817603426194525628082575579, −1.48229082892597641386653894239, 0, 0,
1.48229082892597641386653894239, 1.57817603426194525628082575579, 2.61733473599412061525438083058, 2.72179871476417919643837523251, 3.31532923697428172217110536540, 3.40979821303556915461579134194, 4.34513324285721521640920912394, 4.76593292222870250329319112974, 5.08291140507087395904824827905, 5.42806126622887706801604154001, 6.01718236853581306114667825625, 6.07668786870420372063425359208, 6.88273685644190864594313057689, 6.89618750774710624663477750526, 7.40785290704074470425158174299, 7.71718961459527953971850953805, 8.405893146272842788303624674398, 8.741056859997855473423931196681