Properties

Label 4-175e2-1.1-c11e2-0-0
Degree 44
Conductor 3062530625
Sign 11
Analytic cond. 18079.518079.5
Root an. cond. 11.595611.5956
Motivic weight 1111
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 54·2-s − 120·3-s + 1.46e3·4-s − 6.48e3·6-s − 3.36e4·7-s + 1.10e5·8-s − 2.22e5·9-s − 7.50e5·11-s − 1.75e5·12-s + 9.54e3·13-s − 1.81e6·14-s + 5.63e6·16-s − 4.16e6·17-s − 1.19e7·18-s − 1.79e7·19-s + 4.03e6·21-s − 4.05e7·22-s + 6.61e7·23-s − 1.32e7·24-s + 5.15e5·26-s + 3.38e7·27-s − 4.90e7·28-s + 6.15e7·29-s − 1.52e7·31-s + 7.79e7·32-s + 9.00e7·33-s − 2.24e8·34-s + ⋯
L(s)  = 1  + 1.19·2-s − 0.285·3-s + 0.712·4-s − 0.340·6-s − 0.755·7-s + 1.19·8-s − 1.25·9-s − 1.40·11-s − 0.203·12-s + 0.00713·13-s − 0.902·14-s + 1.34·16-s − 0.710·17-s − 1.49·18-s − 1.66·19-s + 0.215·21-s − 1.67·22-s + 2.14·23-s − 0.340·24-s + 0.00851·26-s + 0.453·27-s − 0.538·28-s + 0.556·29-s − 0.0958·31-s + 0.410·32-s + 0.400·33-s − 0.847·34-s + ⋯

Functional equation

Λ(s)=(30625s/2ΓC(s)2L(s)=(Λ(12s)\begin{aligned}\Lambda(s)=\mathstrut & 30625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(12-s) \end{aligned}
Λ(s)=(30625s/2ΓC(s+11/2)2L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 30625 ^{s/2} \, \Gamma_{\C}(s+11/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 44
Conductor: 3062530625    =    54725^{4} \cdot 7^{2}
Sign: 11
Analytic conductor: 18079.518079.5
Root analytic conductor: 11.595611.5956
Motivic weight: 1111
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (4, 30625, ( :11/2,11/2), 1)(4,\ 30625,\ (\ :11/2, 11/2),\ 1)

Particular Values

L(6)L(6) \approx 2.7674734722.767473472
L(12)L(\frac12) \approx 2.7674734722.767473472
L(132)L(\frac{13}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad5 1 1
7C1C_1 (1+p5T)2 ( 1 + p^{5} T )^{2}
good2D4D_{4} 127pT+91p4T227p12T3+p22T4 1 - 27 p T + 91 p^{4} T^{2} - 27 p^{12} T^{3} + p^{22} T^{4}
3D4D_{4} 1+40pT+26290p2T2+40p12T3+p22T4 1 + 40 p T + 26290 p^{2} T^{2} + 40 p^{12} T^{3} + p^{22} T^{4}
11D4D_{4} 1+68256pT+653251941286T2+68256p12T3+p22T4 1 + 68256 p T + 653251941286 T^{2} + 68256 p^{12} T^{3} + p^{22} T^{4}
13D4D_{4} 19548T+580074739914T29548p11T3+p22T4 1 - 9548 T + 580074739914 T^{2} - 9548 p^{11} T^{3} + p^{22} T^{4}
17D4D_{4} 1+4160052T+72837924685942T2+4160052p11T3+p22T4 1 + 4160052 T + 72837924685942 T^{2} + 4160052 p^{11} T^{3} + p^{22} T^{4}
19D4D_{4} 1+17998712T+293399338219938T2+17998712p11T3+p22T4 1 + 17998712 T + 293399338219938 T^{2} + 17998712 p^{11} T^{3} + p^{22} T^{4}
23D4D_{4} 166161016T+2994683043115918T266161016p11T3+p22T4 1 - 66161016 T + 2994683043115918 T^{2} - 66161016 p^{11} T^{3} + p^{22} T^{4}
29D4D_{4} 12121228pT+12823193731307518T22121228p12T3+p22T4 1 - 2121228 p T + 12823193731307518 T^{2} - 2121228 p^{12} T^{3} + p^{22} T^{4}
31D4D_{4} 1+15281552T+44544265736191854T2+15281552p11T3+p22T4 1 + 15281552 T + 44544265736191854 T^{2} + 15281552 p^{11} T^{3} + p^{22} T^{4}
37D4D_{4} 1527218340T+315935809764623790T2527218340p11T3+p22T4 1 - 527218340 T + 315935809764623790 T^{2} - 527218340 p^{11} T^{3} + p^{22} T^{4}
41D4D_{4} 1+178276140T+1103495454485680198T2+178276140p11T3+p22T4 1 + 178276140 T + 1103495454485680198 T^{2} + 178276140 p^{11} T^{3} + p^{22} T^{4}
43D4D_{4} 1+1826745232T+2408495597390567334T2+1826745232p11T3+p22T4 1 + 1826745232 T + 2408495597390567334 T^{2} + 1826745232 p^{11} T^{3} + p^{22} T^{4}
47D4D_{4} 1+568240704T+125222806434661774T2+568240704p11T3+p22T4 1 + 568240704 T + 125222806434661774 T^{2} + 568240704 p^{11} T^{3} + p^{22} T^{4}
53D4D_{4} 14185816372T+8708326678160294206T24185816372p11T3+p22T4 1 - 4185816372 T + 8708326678160294206 T^{2} - 4185816372 p^{11} T^{3} + p^{22} T^{4}
59D4D_{4} 13111345000T+25961868574953911218T23111345000p11T3+p22T4 1 - 3111345000 T + 25961868574953911218 T^{2} - 3111345000 p^{11} T^{3} + p^{22} T^{4}
61D4D_{4} 115042595060T+ 1 - 15042595060 T + 13 ⁣ ⁣7813\!\cdots\!78T215042595060p11T3+p22T4 T^{2} - 15042595060 p^{11} T^{3} + p^{22} T^{4}
67D4D_{4} 1+9856523968T+ 1 + 9856523968 T + 12 ⁣ ⁣1812\!\cdots\!18T2+9856523968p11T3+p22T4 T^{2} + 9856523968 p^{11} T^{3} + p^{22} T^{4}
71D4D_{4} 1+24312011328T+ 1 + 24312011328 T + 59 ⁣ ⁣0259\!\cdots\!02T2+24312011328p11T3+p22T4 T^{2} + 24312011328 p^{11} T^{3} + p^{22} T^{4}
73D4D_{4} 130890001932T+ 1 - 30890001932 T + 73 ⁣ ⁣4673\!\cdots\!46T230890001932p11T3+p22T4 T^{2} - 30890001932 p^{11} T^{3} + p^{22} T^{4}
79D4D_{4} 11992804256T+ 1 - 1992804256 T + 85 ⁣ ⁣3885\!\cdots\!38T21992804256p11T3+p22T4 T^{2} - 1992804256 p^{11} T^{3} + p^{22} T^{4}
83D4D_{4} 1+5277014568T+ 1 + 5277014568 T + 22 ⁣ ⁣4622\!\cdots\!46T2+5277014568p11T3+p22T4 T^{2} + 5277014568 p^{11} T^{3} + p^{22} T^{4}
89D4D_{4} 1+101541312828T+ 1 + 101541312828 T + 76 ⁣ ⁣7876\!\cdots\!78T2+101541312828p11T3+p22T4 T^{2} + 101541312828 p^{11} T^{3} + p^{22} T^{4}
97D4D_{4} 1192228621116T+ 1 - 192228621116 T + 23 ⁣ ⁣1423\!\cdots\!14T2192228621116p11T3+p22T4 T^{2} - 192228621116 p^{11} T^{3} + p^{22} T^{4}
show more
show less
   L(s)=p j=14(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.99533799497251596088279201993, −10.44872300198661882941095791710, −10.35255125457958396811050330374, −9.481925143875643634925665676721, −8.766802917438895353368923990851, −8.406578965395051766850139195228, −7.934841566244686388827528364128, −6.91809026701870038146392150993, −6.91295602763620197322175792995, −6.19101338989329804896488319089, −5.40138793371749692029644439859, −5.36858776407250199398693416871, −4.58423438782076973348576696105, −4.27323797046053642523126380734, −3.36250107873006060477389375345, −2.97097924926627517587399364779, −2.41558585353040226758569586394, −1.91911949183553563809916743772, −0.821408929906589560545650552818, −0.33702950726814817165123946365, 0.33702950726814817165123946365, 0.821408929906589560545650552818, 1.91911949183553563809916743772, 2.41558585353040226758569586394, 2.97097924926627517587399364779, 3.36250107873006060477389375345, 4.27323797046053642523126380734, 4.58423438782076973348576696105, 5.36858776407250199398693416871, 5.40138793371749692029644439859, 6.19101338989329804896488319089, 6.91295602763620197322175792995, 6.91809026701870038146392150993, 7.934841566244686388827528364128, 8.406578965395051766850139195228, 8.766802917438895353368923990851, 9.481925143875643634925665676721, 10.35255125457958396811050330374, 10.44872300198661882941095791710, 10.99533799497251596088279201993

Graph of the ZZ-function along the critical line