L(s) = 1 | + 54·2-s − 120·3-s + 1.46e3·4-s − 6.48e3·6-s − 3.36e4·7-s + 1.10e5·8-s − 2.22e5·9-s − 7.50e5·11-s − 1.75e5·12-s + 9.54e3·13-s − 1.81e6·14-s + 5.63e6·16-s − 4.16e6·17-s − 1.19e7·18-s − 1.79e7·19-s + 4.03e6·21-s − 4.05e7·22-s + 6.61e7·23-s − 1.32e7·24-s + 5.15e5·26-s + 3.38e7·27-s − 4.90e7·28-s + 6.15e7·29-s − 1.52e7·31-s + 7.79e7·32-s + 9.00e7·33-s − 2.24e8·34-s + ⋯ |
L(s) = 1 | + 1.19·2-s − 0.285·3-s + 0.712·4-s − 0.340·6-s − 0.755·7-s + 1.19·8-s − 1.25·9-s − 1.40·11-s − 0.203·12-s + 0.00713·13-s − 0.902·14-s + 1.34·16-s − 0.710·17-s − 1.49·18-s − 1.66·19-s + 0.215·21-s − 1.67·22-s + 2.14·23-s − 0.340·24-s + 0.00851·26-s + 0.453·27-s − 0.538·28-s + 0.556·29-s − 0.0958·31-s + 0.410·32-s + 0.400·33-s − 0.847·34-s + ⋯ |
Λ(s)=(=(30625s/2ΓC(s)2L(s)Λ(12−s)
Λ(s)=(=(30625s/2ΓC(s+11/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
30625
= 54⋅72
|
Sign: |
1
|
Analytic conductor: |
18079.5 |
Root analytic conductor: |
11.5956 |
Motivic weight: |
11 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 30625, ( :11/2,11/2), 1)
|
Particular Values
L(6) |
≈ |
2.767473472 |
L(21) |
≈ |
2.767473472 |
L(213) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 5 | | 1 |
| 7 | C1 | (1+p5T)2 |
good | 2 | D4 | 1−27pT+91p4T2−27p12T3+p22T4 |
| 3 | D4 | 1+40pT+26290p2T2+40p12T3+p22T4 |
| 11 | D4 | 1+68256pT+653251941286T2+68256p12T3+p22T4 |
| 13 | D4 | 1−9548T+580074739914T2−9548p11T3+p22T4 |
| 17 | D4 | 1+4160052T+72837924685942T2+4160052p11T3+p22T4 |
| 19 | D4 | 1+17998712T+293399338219938T2+17998712p11T3+p22T4 |
| 23 | D4 | 1−66161016T+2994683043115918T2−66161016p11T3+p22T4 |
| 29 | D4 | 1−2121228pT+12823193731307518T2−2121228p12T3+p22T4 |
| 31 | D4 | 1+15281552T+44544265736191854T2+15281552p11T3+p22T4 |
| 37 | D4 | 1−527218340T+315935809764623790T2−527218340p11T3+p22T4 |
| 41 | D4 | 1+178276140T+1103495454485680198T2+178276140p11T3+p22T4 |
| 43 | D4 | 1+1826745232T+2408495597390567334T2+1826745232p11T3+p22T4 |
| 47 | D4 | 1+568240704T+125222806434661774T2+568240704p11T3+p22T4 |
| 53 | D4 | 1−4185816372T+8708326678160294206T2−4185816372p11T3+p22T4 |
| 59 | D4 | 1−3111345000T+25961868574953911218T2−3111345000p11T3+p22T4 |
| 61 | D4 | 1−15042595060T+13⋯78T2−15042595060p11T3+p22T4 |
| 67 | D4 | 1+9856523968T+12⋯18T2+9856523968p11T3+p22T4 |
| 71 | D4 | 1+24312011328T+59⋯02T2+24312011328p11T3+p22T4 |
| 73 | D4 | 1−30890001932T+73⋯46T2−30890001932p11T3+p22T4 |
| 79 | D4 | 1−1992804256T+85⋯38T2−1992804256p11T3+p22T4 |
| 83 | D4 | 1+5277014568T+22⋯46T2+5277014568p11T3+p22T4 |
| 89 | D4 | 1+101541312828T+76⋯78T2+101541312828p11T3+p22T4 |
| 97 | D4 | 1−192228621116T+23⋯14T2−192228621116p11T3+p22T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.99533799497251596088279201993, −10.44872300198661882941095791710, −10.35255125457958396811050330374, −9.481925143875643634925665676721, −8.766802917438895353368923990851, −8.406578965395051766850139195228, −7.934841566244686388827528364128, −6.91809026701870038146392150993, −6.91295602763620197322175792995, −6.19101338989329804896488319089, −5.40138793371749692029644439859, −5.36858776407250199398693416871, −4.58423438782076973348576696105, −4.27323797046053642523126380734, −3.36250107873006060477389375345, −2.97097924926627517587399364779, −2.41558585353040226758569586394, −1.91911949183553563809916743772, −0.821408929906589560545650552818, −0.33702950726814817165123946365,
0.33702950726814817165123946365, 0.821408929906589560545650552818, 1.91911949183553563809916743772, 2.41558585353040226758569586394, 2.97097924926627517587399364779, 3.36250107873006060477389375345, 4.27323797046053642523126380734, 4.58423438782076973348576696105, 5.36858776407250199398693416871, 5.40138793371749692029644439859, 6.19101338989329804896488319089, 6.91295602763620197322175792995, 6.91809026701870038146392150993, 7.934841566244686388827528364128, 8.406578965395051766850139195228, 8.766802917438895353368923990851, 9.481925143875643634925665676721, 10.35255125457958396811050330374, 10.44872300198661882941095791710, 10.99533799497251596088279201993