Properties

Label 4-1800e2-1.1-c1e2-0-5
Degree $4$
Conductor $3240000$
Sign $1$
Analytic cond. $206.585$
Root an. cond. $3.79118$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·11-s − 2·19-s + 8·29-s − 10·31-s − 24·41-s + 13·49-s + 16·59-s + 14·61-s − 24·71-s − 24·79-s − 24·101-s + 14·109-s + 26·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 25·169-s + 173-s + 179-s + 181-s + 191-s + ⋯
L(s)  = 1  − 2.41·11-s − 0.458·19-s + 1.48·29-s − 1.79·31-s − 3.74·41-s + 13/7·49-s + 2.08·59-s + 1.79·61-s − 2.84·71-s − 2.70·79-s − 2.38·101-s + 1.34·109-s + 2.36·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.92·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3240000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3240000\)    =    \(2^{6} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(206.585\)
Root analytic conductor: \(3.79118\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 3240000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5880011866\)
\(L(\frac12)\) \(\approx\) \(0.5880011866\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7$C_2^2$ \( 1 - 13 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
37$C_2^2$ \( 1 - 38 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 61 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 38 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 + 35 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
79$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 102 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + p T^{2} )^{2} \)
97$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.624594150117071153702694186486, −8.760109176557023419014752144730, −8.600888289893602811029976215309, −8.481755574450981704992289254749, −7.970449111694630378196261404925, −7.31484494826072876065514097134, −7.27564377541195974041818948170, −6.80994110932721019354073586753, −6.30409406156215446806246190472, −5.57165962929901925009274085807, −5.47849298858040102380394019960, −5.11505153136689768039395941111, −4.65685115078120863180217888785, −4.02185097798549277711437380342, −3.62327964654925743182584638950, −2.86750209863824178041767569355, −2.68840917913883505170955410335, −2.06441815840366223132747920604, −1.41375401408698772125564247912, −0.27801515378856900081906100896, 0.27801515378856900081906100896, 1.41375401408698772125564247912, 2.06441815840366223132747920604, 2.68840917913883505170955410335, 2.86750209863824178041767569355, 3.62327964654925743182584638950, 4.02185097798549277711437380342, 4.65685115078120863180217888785, 5.11505153136689768039395941111, 5.47849298858040102380394019960, 5.57165962929901925009274085807, 6.30409406156215446806246190472, 6.80994110932721019354073586753, 7.27564377541195974041818948170, 7.31484494826072876065514097134, 7.970449111694630378196261404925, 8.481755574450981704992289254749, 8.600888289893602811029976215309, 8.760109176557023419014752144730, 9.624594150117071153702694186486

Graph of the $Z$-function along the critical line