Properties

Label 4-1800e2-1.1-c3e2-0-16
Degree $4$
Conductor $3240000$
Sign $1$
Analytic cond. $11279.1$
Root an. cond. $10.3055$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 68·11-s − 8·19-s + 92·29-s − 520·31-s + 96·41-s + 682·49-s + 4·59-s − 76·61-s + 1.41e3·71-s + 1.70e3·79-s + 2.76e3·89-s − 1.40e3·101-s − 1.20e3·109-s + 806·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 230·169-s + 173-s + 179-s + 181-s + ⋯
L(s)  = 1  − 1.86·11-s − 0.0965·19-s + 0.589·29-s − 3.01·31-s + 0.365·41-s + 1.98·49-s + 0.00882·59-s − 0.159·61-s + 2.36·71-s + 2.42·79-s + 3.28·89-s − 1.38·101-s − 1.05·109-s + 0.605·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + 0.000508·157-s + 0.000480·163-s + 0.000463·167-s − 0.104·169-s + 0.000439·173-s + 0.000417·179-s + 0.000410·181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3240000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240000 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3240000\)    =    \(2^{6} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(11279.1\)
Root analytic conductor: \(10.3055\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 3240000,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.453817472\)
\(L(\frac12)\) \(\approx\) \(2.453817472\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7$C_2^2$ \( 1 - 682 T^{2} + p^{6} T^{4} \)
11$C_2$ \( ( 1 + 34 T + p^{3} T^{2} )^{2} \)
13$C_2^2$ \( 1 + 230 T^{2} + p^{6} T^{4} \)
17$C_2^2$ \( 1 - 8382 T^{2} + p^{6} T^{4} \)
19$C_2$ \( ( 1 + 4 T + p^{3} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 1230 T^{2} + p^{6} T^{4} \)
29$C_2$ \( ( 1 - 46 T + p^{3} T^{2} )^{2} \)
31$C_2$ \( ( 1 + 260 T + p^{3} T^{2} )^{2} \)
37$C_2^2$ \( 1 - 3962 T^{2} + p^{6} T^{4} \)
41$C_2$ \( ( 1 - 48 T + p^{3} T^{2} )^{2} \)
43$C_2^2$ \( 1 - 119014 T^{2} + p^{6} T^{4} \)
47$C_2^2$ \( 1 - 196830 T^{2} + p^{6} T^{4} \)
53$C_2^2$ \( 1 - 126358 T^{2} + p^{6} T^{4} \)
59$C_2$ \( ( 1 - 2 T + p^{3} T^{2} )^{2} \)
61$C_2$ \( ( 1 + 38 T + p^{3} T^{2} )^{2} \)
67$C_2^2$ \( 1 - 541990 T^{2} + p^{6} T^{4} \)
71$C_2$ \( ( 1 - 708 T + p^{3} T^{2} )^{2} \)
73$C_2^2$ \( 1 - 635150 T^{2} + p^{6} T^{4} \)
79$C_2$ \( ( 1 - 852 T + p^{3} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 431238 T^{2} + p^{6} T^{4} \)
89$C_2$ \( ( 1 - 1380 T + p^{3} T^{2} )^{2} \)
97$C_2^2$ \( 1 - 1561150 T^{2} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.035908666784691999736101897209, −8.922013161679591478974999430278, −8.037386346182623124144825384861, −8.017666463992369804593528506934, −7.61692977063714902889143877774, −7.26843982751218006092893734642, −6.60132306249740675139085559231, −6.53142425400459819007250692909, −5.60488737358957664894247925099, −5.50623895790388903831508603129, −5.19386388806185095956280555275, −4.72836856464709470342183853592, −3.95417737132446741696620288424, −3.82260309886258355834662428507, −3.09068205238293067528554307534, −2.71120859256840292044141119559, −1.97739074917696641986942044058, −1.93768075108107013089919700456, −0.69633812930821871988978238510, −0.47472698697582435819906859719, 0.47472698697582435819906859719, 0.69633812930821871988978238510, 1.93768075108107013089919700456, 1.97739074917696641986942044058, 2.71120859256840292044141119559, 3.09068205238293067528554307534, 3.82260309886258355834662428507, 3.95417737132446741696620288424, 4.72836856464709470342183853592, 5.19386388806185095956280555275, 5.50623895790388903831508603129, 5.60488737358957664894247925099, 6.53142425400459819007250692909, 6.60132306249740675139085559231, 7.26843982751218006092893734642, 7.61692977063714902889143877774, 8.017666463992369804593528506934, 8.037386346182623124144825384861, 8.922013161679591478974999430278, 9.035908666784691999736101897209

Graph of the $Z$-function along the critical line