Properties

Label 4-1800e2-1.1-c3e2-0-7
Degree $4$
Conductor $3240000$
Sign $1$
Analytic cond. $11279.1$
Root an. cond. $10.3055$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 28·11-s − 38·19-s + 28·29-s + 266·31-s − 168·41-s + 661·49-s − 388·59-s − 34·61-s − 1.65e3·71-s + 1.10e3·79-s − 2.20e3·89-s − 1.10e3·101-s + 3.68e3·109-s − 2.07e3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 4.39e3·169-s + 173-s + 179-s + 181-s + ⋯
L(s)  = 1  − 0.767·11-s − 0.458·19-s + 0.179·29-s + 1.54·31-s − 0.639·41-s + 1.92·49-s − 0.856·59-s − 0.0713·61-s − 2.76·71-s + 1.57·79-s − 2.62·89-s − 1.08·101-s + 3.23·109-s − 1.55·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + 0.000508·157-s + 0.000480·163-s + 0.000463·167-s + 1.99·169-s + 0.000439·173-s + 0.000417·179-s + 0.000410·181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3240000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240000 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3240000\)    =    \(2^{6} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(11279.1\)
Root analytic conductor: \(10.3055\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 3240000,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.013779520\)
\(L(\frac12)\) \(\approx\) \(1.013779520\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7$C_2^2$ \( 1 - 661 T^{2} + p^{6} T^{4} \)
11$C_2$ \( ( 1 + 14 T + p^{3} T^{2} )^{2} \)
13$C_2^2$ \( 1 - 4393 T^{2} + p^{6} T^{4} \)
17$C_2^2$ \( 1 - 7710 T^{2} + p^{6} T^{4} \)
19$C_2$ \( ( 1 + p T + p^{3} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 42 p^{2} T^{2} + p^{6} T^{4} \)
29$C_2$ \( ( 1 - 14 T + p^{3} T^{2} )^{2} \)
31$C_2$ \( ( 1 - 133 T + p^{3} T^{2} )^{2} \)
37$C_2^2$ \( 1 - 34742 T^{2} + p^{6} T^{4} \)
41$C_2$ \( ( 1 + 84 T + p^{3} T^{2} )^{2} \)
43$C_2^2$ \( 1 - 131125 T^{2} + p^{6} T^{4} \)
47$C_2^2$ \( 1 - 39546 T^{2} + p^{6} T^{4} \)
53$C_2^2$ \( 1 - 89818 T^{2} + p^{6} T^{4} \)
59$C_2$ \( ( 1 + 194 T + p^{3} T^{2} )^{2} \)
61$C_2$ \( ( 1 + 17 T + p^{3} T^{2} )^{2} \)
67$C_2^2$ \( 1 - 175117 T^{2} + p^{6} T^{4} \)
71$C_2$ \( ( 1 + 828 T + p^{3} T^{2} )^{2} \)
73$C_2^2$ \( 1 - 453134 T^{2} + p^{6} T^{4} \)
79$C_2$ \( ( 1 - 552 T + p^{3} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 1123410 T^{2} + p^{6} T^{4} \)
89$C_2$ \( ( 1 + 1104 T + p^{3} T^{2} )^{2} \)
97$C_2^2$ \( 1 - 1118065 T^{2} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.082133900033455591715144742662, −8.617190674675728636225261170691, −8.433450826693909415053468609062, −7.88061089006616393460637474878, −7.62286755274128728592367266603, −7.13212757852434674979840553204, −6.78660211770914979109623115383, −6.23860887190096125143912679361, −5.97713656241324522250851016807, −5.45846272535351158481225122956, −5.07628384929594705147211156638, −4.48464602346167380237537251035, −4.32212075797690691869831929344, −3.65745635718767971466762032472, −3.12784551227140321830914791744, −2.59410291728196429053821993872, −2.34057615370752309759200190601, −1.50150977452343665718071761984, −1.03859485927879428294446752631, −0.23136645742809323516223790514, 0.23136645742809323516223790514, 1.03859485927879428294446752631, 1.50150977452343665718071761984, 2.34057615370752309759200190601, 2.59410291728196429053821993872, 3.12784551227140321830914791744, 3.65745635718767971466762032472, 4.32212075797690691869831929344, 4.48464602346167380237537251035, 5.07628384929594705147211156638, 5.45846272535351158481225122956, 5.97713656241324522250851016807, 6.23860887190096125143912679361, 6.78660211770914979109623115383, 7.13212757852434674979840553204, 7.62286755274128728592367266603, 7.88061089006616393460637474878, 8.433450826693909415053468609062, 8.617190674675728636225261170691, 9.082133900033455591715144742662

Graph of the $Z$-function along the critical line