Properties

Label 4-1800e2-1.1-c3e2-0-8
Degree $4$
Conductor $3240000$
Sign $1$
Analytic cond. $11279.1$
Root an. cond. $10.3055$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 38·11-s + 182·19-s − 544·29-s − 460·31-s − 234·41-s + 650·49-s + 624·59-s + 340·61-s + 104·71-s − 2.10e3·79-s + 1.59e3·89-s − 972·101-s − 252·109-s − 1.57e3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 4.25e3·169-s + 173-s + 179-s + 181-s + ⋯
L(s)  = 1  + 1.04·11-s + 2.19·19-s − 3.48·29-s − 2.66·31-s − 0.891·41-s + 1.89·49-s + 1.37·59-s + 0.713·61-s + 0.173·71-s − 3.00·79-s + 1.90·89-s − 0.957·101-s − 0.221·109-s − 1.18·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + 0.000508·157-s + 0.000480·163-s + 0.000463·167-s + 1.93·169-s + 0.000439·173-s + 0.000417·179-s + 0.000410·181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3240000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240000 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3240000\)    =    \(2^{6} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(11279.1\)
Root analytic conductor: \(10.3055\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 3240000,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.304171411\)
\(L(\frac12)\) \(\approx\) \(1.304171411\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7$C_2^2$ \( 1 - 650 T^{2} + p^{6} T^{4} \)
11$C_2$ \( ( 1 - 19 T + p^{3} T^{2} )^{2} \)
13$C_2^2$ \( 1 - 4250 T^{2} + p^{6} T^{4} \)
17$C_2^2$ \( 1 - 4201 T^{2} + p^{6} T^{4} \)
19$C_2$ \( ( 1 - 91 T + p^{3} T^{2} )^{2} \)
23$C_2^2$ \( 1 + 5942 T^{2} + p^{6} T^{4} \)
29$C_2$ \( ( 1 + 272 T + p^{3} T^{2} )^{2} \)
31$C_2$ \( ( 1 + 230 T + p^{3} T^{2} )^{2} \)
37$C_2^2$ \( 1 - 68182 T^{2} + p^{6} T^{4} \)
41$C_2$ \( ( 1 + 117 T + p^{3} T^{2} )^{2} \)
43$C_2^2$ \( 1 - 20630 T^{2} + p^{6} T^{4} \)
47$C_2^2$ \( 1 - 204942 T^{2} + p^{6} T^{4} \)
53$C_2^2$ \( 1 - 136150 T^{2} + p^{6} T^{4} \)
59$C_2$ \( ( 1 - 312 T + p^{3} T^{2} )^{2} \)
61$C_2$ \( ( 1 - 170 T + p^{3} T^{2} )^{2} \)
67$C_2^2$ \( 1 - 19357 T^{2} + p^{6} T^{4} \)
71$C_2$ \( ( 1 - 52 T + p^{3} T^{2} )^{2} \)
73$C_2^2$ \( 1 + 184327 T^{2} + p^{6} T^{4} \)
79$C_2$ \( ( 1 + 1054 T + p^{3} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 1020373 T^{2} + p^{6} T^{4} \)
89$C_2$ \( ( 1 - 799 T + p^{3} T^{2} )^{2} \)
97$C_2^2$ \( 1 - 899902 T^{2} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.241685726792661589295040667046, −8.894693498234480426518741133861, −8.406585703449442169131287206968, −7.76627119277445115009282800726, −7.41148629895194224364889449462, −7.13608954064081721106802313744, −7.05601620856204670762613801380, −6.26813029503169776218473653404, −5.68666198437608575026678268228, −5.42103961117880266496177530750, −5.39500464243317504707125112597, −4.59445979942090984640690201319, −3.83886667775980941876991893183, −3.62969378805843854786234286014, −3.56289228253312399108793702220, −2.62386882359681457512083123882, −2.07958752919031604940185233843, −1.50806694959339091488919907769, −1.15240306522324063746122816158, −0.24916026252413144721109458942, 0.24916026252413144721109458942, 1.15240306522324063746122816158, 1.50806694959339091488919907769, 2.07958752919031604940185233843, 2.62386882359681457512083123882, 3.56289228253312399108793702220, 3.62969378805843854786234286014, 3.83886667775980941876991893183, 4.59445979942090984640690201319, 5.39500464243317504707125112597, 5.42103961117880266496177530750, 5.68666198437608575026678268228, 6.26813029503169776218473653404, 7.05601620856204670762613801380, 7.13608954064081721106802313744, 7.41148629895194224364889449462, 7.76627119277445115009282800726, 8.406585703449442169131287206968, 8.894693498234480426518741133861, 9.241685726792661589295040667046

Graph of the $Z$-function along the critical line