L(s) = 1 | + 4·5-s − 6·7-s − 9-s + 2·11-s − 8·13-s + 6·17-s − 6·19-s + 2·23-s + 11·25-s − 6·29-s − 24·35-s − 16·37-s − 12·43-s − 4·45-s − 10·47-s + 18·49-s + 8·55-s − 14·59-s + 18·61-s + 6·63-s − 32·65-s − 4·67-s + 16·71-s − 10·73-s − 12·77-s + 81-s + 24·85-s + ⋯ |
L(s) = 1 | + 1.78·5-s − 2.26·7-s − 1/3·9-s + 0.603·11-s − 2.21·13-s + 1.45·17-s − 1.37·19-s + 0.417·23-s + 11/5·25-s − 1.11·29-s − 4.05·35-s − 2.63·37-s − 1.82·43-s − 0.596·45-s − 1.45·47-s + 18/7·49-s + 1.07·55-s − 1.82·59-s + 2.30·61-s + 0.755·63-s − 3.96·65-s − 0.488·67-s + 1.89·71-s − 1.17·73-s − 1.36·77-s + 1/9·81-s + 2.60·85-s + ⋯ |
Λ(s)=(=(3686400s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(3686400s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
3686400
= 214⋅32⋅52
|
Sign: |
1
|
Analytic conductor: |
235.048 |
Root analytic conductor: |
3.91551 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 3686400, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.6242929082 |
L(21) |
≈ |
0.6242929082 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1+T2 |
| 5 | C2 | 1−4T+pT2 |
good | 7 | C22 | 1+6T+18T2+6pT3+p2T4 |
| 11 | C22 | 1−2T+2T2−2pT3+p2T4 |
| 13 | C2 | (1+4T+pT2)2 |
| 17 | C2 | (1−8T+pT2)(1+2T+pT2) |
| 19 | C22 | 1+6T+18T2+6pT3+p2T4 |
| 23 | C22 | 1−2T+2T2−2pT3+p2T4 |
| 29 | C2 | (1−4T+pT2)(1+10T+pT2) |
| 31 | C22 | 1+38T2+p2T4 |
| 37 | C2 | (1+8T+pT2)2 |
| 41 | C2 | (1−pT2)2 |
| 43 | C2 | (1+6T+pT2)2 |
| 47 | C22 | 1+10T+50T2+10pT3+p2T4 |
| 53 | C22 | 1−70T2+p2T4 |
| 59 | C22 | 1+14T+98T2+14pT3+p2T4 |
| 61 | C22 | 1−18T+162T2−18pT3+p2T4 |
| 67 | C2 | (1+2T+pT2)2 |
| 71 | C2 | (1−8T+pT2)2 |
| 73 | C2 | (1−6T+pT2)(1+16T+pT2) |
| 79 | C2 | (1+pT2)2 |
| 83 | C22 | 1−150T2+p2T4 |
| 89 | C2 | (1−10T+pT2)2 |
| 97 | C22 | 1+14T+98T2+14pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.653976858942879259257762436987, −9.106309189021959827167912669434, −8.917837311603604779674577775645, −8.267205873821144939363906250142, −7.891379922770582023928293534658, −7.04856826438382263232025938415, −6.98010916421581563782250907528, −6.56191891001832729600629776126, −6.43181830637520079300615743134, −5.72088047262283426678519189245, −5.50326203304008999628408397645, −5.07952247830461095011450602086, −4.73433350620126477554795720053, −3.74902053988551720427260817106, −3.50844155819926030731595601368, −2.93736733401200392927571435665, −2.63394281614110867228576864515, −1.94714286290854385696877503072, −1.56146344371270900377637906142, −0.26541719914254131492948166175,
0.26541719914254131492948166175, 1.56146344371270900377637906142, 1.94714286290854385696877503072, 2.63394281614110867228576864515, 2.93736733401200392927571435665, 3.50844155819926030731595601368, 3.74902053988551720427260817106, 4.73433350620126477554795720053, 5.07952247830461095011450602086, 5.50326203304008999628408397645, 5.72088047262283426678519189245, 6.43181830637520079300615743134, 6.56191891001832729600629776126, 6.98010916421581563782250907528, 7.04856826438382263232025938415, 7.891379922770582023928293534658, 8.267205873821144939363906250142, 8.917837311603604779674577775645, 9.106309189021959827167912669434, 9.653976858942879259257762436987