L(s) = 1 | + 4·5-s − 9-s − 12·19-s + 11·25-s + 16·29-s − 16·31-s − 12·41-s − 4·45-s − 2·49-s + 24·59-s + 28·61-s − 16·71-s + 24·79-s + 81-s − 12·89-s − 48·95-s + 4·109-s − 22·121-s + 24·125-s + 127-s + 131-s + 137-s + 139-s + 64·145-s + 149-s + 151-s − 64·155-s + ⋯ |
L(s) = 1 | + 1.78·5-s − 1/3·9-s − 2.75·19-s + 11/5·25-s + 2.97·29-s − 2.87·31-s − 1.87·41-s − 0.596·45-s − 2/7·49-s + 3.12·59-s + 3.58·61-s − 1.89·71-s + 2.70·79-s + 1/9·81-s − 1.27·89-s − 4.92·95-s + 0.383·109-s − 2·121-s + 2.14·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 5.31·145-s + 0.0819·149-s + 0.0813·151-s − 5.14·155-s + ⋯ |
Λ(s)=(=(3686400s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(3686400s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
3686400
= 214⋅32⋅52
|
Sign: |
1
|
Analytic conductor: |
235.048 |
Root analytic conductor: |
3.91551 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 3686400, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.741740558 |
L(21) |
≈ |
2.741740558 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1+T2 |
| 5 | C2 | 1−4T+pT2 |
good | 7 | C22 | 1+2T2+p2T4 |
| 11 | C2 | (1+pT2)2 |
| 13 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 17 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 19 | C2 | (1+6T+pT2)2 |
| 23 | C22 | 1−10T2+p2T4 |
| 29 | C2 | (1−8T+pT2)2 |
| 31 | C2 | (1+8T+pT2)2 |
| 37 | C22 | 1+26T2+p2T4 |
| 41 | C2 | (1+6T+pT2)2 |
| 43 | C22 | 1−70T2+p2T4 |
| 47 | C22 | 1−90T2+p2T4 |
| 53 | C22 | 1−70T2+p2T4 |
| 59 | C2 | (1−12T+pT2)2 |
| 61 | C2 | (1−14T+pT2)2 |
| 67 | C22 | 1−118T2+p2T4 |
| 71 | C2 | (1+8T+pT2)2 |
| 73 | C22 | 1−130T2+p2T4 |
| 79 | C2 | (1−12T+pT2)2 |
| 83 | C22 | 1−102T2+p2T4 |
| 89 | C2 | (1+6T+pT2)2 |
| 97 | C2 | (1−pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.406171627091146240017670032624, −8.852788276641653995601695500925, −8.677837639968309451837005472450, −8.392865466590526959443821282965, −8.121732002480809353675107529992, −7.21516605585194194959190067794, −6.79989865345280484695001224396, −6.62294726370191494405706318762, −6.37911386646073402901520764011, −5.63860816953378232698023246273, −5.57182273236609865220494082500, −4.95065225135551634082598349079, −4.73602281260995820595505859434, −3.83291737925194375357772197923, −3.76119844539937844423297141054, −2.79139402660676206332875153889, −2.39645388668815366288858194558, −2.05373433774555767093572023145, −1.52897513463252493945054421534, −0.58184425971407767233654672679,
0.58184425971407767233654672679, 1.52897513463252493945054421534, 2.05373433774555767093572023145, 2.39645388668815366288858194558, 2.79139402660676206332875153889, 3.76119844539937844423297141054, 3.83291737925194375357772197923, 4.73602281260995820595505859434, 4.95065225135551634082598349079, 5.57182273236609865220494082500, 5.63860816953378232698023246273, 6.37911386646073402901520764011, 6.62294726370191494405706318762, 6.79989865345280484695001224396, 7.21516605585194194959190067794, 8.121732002480809353675107529992, 8.392865466590526959443821282965, 8.677837639968309451837005472450, 8.852788276641653995601695500925, 9.406171627091146240017670032624