L(s) = 1 | − 2·3-s + 2·5-s − 2·7-s + 3·9-s − 4·11-s + 2·13-s − 4·15-s + 6·17-s − 2·19-s + 4·21-s + 2·23-s + 3·25-s − 4·27-s + 6·31-s + 8·33-s − 4·35-s − 2·37-s − 4·39-s − 4·41-s − 4·43-s + 6·45-s + 18·47-s + 6·49-s − 12·51-s + 20·53-s − 8·55-s + 4·57-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 0.894·5-s − 0.755·7-s + 9-s − 1.20·11-s + 0.554·13-s − 1.03·15-s + 1.45·17-s − 0.458·19-s + 0.872·21-s + 0.417·23-s + 3/5·25-s − 0.769·27-s + 1.07·31-s + 1.39·33-s − 0.676·35-s − 0.328·37-s − 0.640·39-s − 0.624·41-s − 0.609·43-s + 0.894·45-s + 2.62·47-s + 6/7·49-s − 1.68·51-s + 2.74·53-s − 1.07·55-s + 0.529·57-s + ⋯ |
Λ(s)=(=(3686400s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(3686400s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
3686400
= 214⋅32⋅52
|
Sign: |
1
|
Analytic conductor: |
235.048 |
Root analytic conductor: |
3.91551 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 3686400, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.871566810 |
L(21) |
≈ |
1.871566810 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | (1+T)2 |
| 5 | C1 | (1−T)2 |
good | 7 | D4 | 1+2T−2T2+2pT3+p2T4 |
| 11 | C2 | (1+2T+pT2)2 |
| 13 | C4 | 1−2T+10T2−2pT3+p2T4 |
| 17 | D4 | 1−6T+26T2−6pT3+p2T4 |
| 19 | D4 | 1+2T+22T2+2pT3+p2T4 |
| 23 | D4 | 1−2T+30T2−2pT3+p2T4 |
| 29 | C22 | 1−10T2+p2T4 |
| 31 | D4 | 1−6T+54T2−6pT3+p2T4 |
| 37 | D4 | 1+2T+58T2+2pT3+p2T4 |
| 41 | C2 | (1+2T+pT2)2 |
| 43 | D4 | 1+4T+22T2+4pT3+p2T4 |
| 47 | D4 | 1−18T+158T2−18pT3+p2T4 |
| 53 | C2 | (1−10T+pT2)2 |
| 59 | C2 | (1+6T+pT2)2 |
| 61 | C2 | (1+2T+pT2)2 |
| 67 | D4 | 1+4T+70T2+4pT3+p2T4 |
| 71 | C2 | (1−8T+pT2)2 |
| 73 | D4 | 1−8T+94T2−8pT3+p2T4 |
| 79 | D4 | 1−18T+222T2−18pT3+p2T4 |
| 83 | C2 | (1−4T+pT2)2 |
| 89 | C2 | (1+10T+pT2)2 |
| 97 | C2 | (1−10T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.356791594914383908210474172565, −9.122500641723497903450375439740, −8.748323782677769810330679160595, −8.143208932893733349944922815051, −7.78009946351911600510911295873, −7.39536996372988463250358628039, −6.86663253534215083547353363129, −6.60336096654987276107479730905, −6.10346534127001598548807155674, −5.78356093226106515295114625768, −5.45397693751066073370802890689, −5.19060275857337787418167720091, −4.61313099545740155348448603371, −4.15959188512280780902083877018, −3.35398486943687777956529763738, −3.25433193910272785317620247166, −2.31308599493634910666141141733, −2.09642406181533508831481710746, −0.979120241433238298053492313580, −0.68522397140095519720806648681,
0.68522397140095519720806648681, 0.979120241433238298053492313580, 2.09642406181533508831481710746, 2.31308599493634910666141141733, 3.25433193910272785317620247166, 3.35398486943687777956529763738, 4.15959188512280780902083877018, 4.61313099545740155348448603371, 5.19060275857337787418167720091, 5.45397693751066073370802890689, 5.78356093226106515295114625768, 6.10346534127001598548807155674, 6.60336096654987276107479730905, 6.86663253534215083547353363129, 7.39536996372988463250358628039, 7.78009946351911600510911295873, 8.143208932893733349944922815051, 8.748323782677769810330679160595, 9.122500641723497903450375439740, 9.356791594914383908210474172565