Properties

Label 4-20e2-1.1-c2e2-0-0
Degree $4$
Conductor $400$
Sign $1$
Analytic cond. $0.296981$
Root an. cond. $0.738214$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·4-s + 6·5-s − 18·9-s + 16·16-s − 24·20-s + 11·25-s + 84·29-s + 72·36-s − 36·41-s − 108·45-s − 98·49-s + 44·61-s − 64·64-s + 96·80-s + 243·81-s − 156·89-s − 44·100-s − 396·101-s + 364·109-s − 336·116-s + 242·121-s − 84·125-s + 127-s + 131-s + 137-s + 139-s − 288·144-s + ⋯
L(s)  = 1  − 4-s + 6/5·5-s − 2·9-s + 16-s − 6/5·20-s + 0.439·25-s + 2.89·29-s + 2·36-s − 0.878·41-s − 2.39·45-s − 2·49-s + 0.721·61-s − 64-s + 6/5·80-s + 3·81-s − 1.75·89-s − 0.439·100-s − 3.92·101-s + 3.33·109-s − 2.89·116-s + 2·121-s − 0.671·125-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s − 2·144-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(400\)    =    \(2^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(0.296981\)
Root analytic conductor: \(0.738214\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 400,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.6871784578\)
\(L(\frac12)\) \(\approx\) \(0.6871784578\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p^{2} T^{2} \)
5$C_2$ \( 1 - 6 T + p^{2} T^{2} \)
good3$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
7$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
11$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
13$C_2$ \( ( 1 - 10 T + p^{2} T^{2} )( 1 + 10 T + p^{2} T^{2} ) \)
17$C_2$ \( ( 1 - 30 T + p^{2} T^{2} )( 1 + 30 T + p^{2} T^{2} ) \)
19$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
23$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
29$C_2$ \( ( 1 - 42 T + p^{2} T^{2} )^{2} \)
31$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
37$C_2$ \( ( 1 - 70 T + p^{2} T^{2} )( 1 + 70 T + p^{2} T^{2} ) \)
41$C_2$ \( ( 1 + 18 T + p^{2} T^{2} )^{2} \)
43$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
47$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
53$C_2$ \( ( 1 - 90 T + p^{2} T^{2} )( 1 + 90 T + p^{2} T^{2} ) \)
59$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
61$C_2$ \( ( 1 - 22 T + p^{2} T^{2} )^{2} \)
67$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
71$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
73$C_2$ \( ( 1 - 110 T + p^{2} T^{2} )( 1 + 110 T + p^{2} T^{2} ) \)
79$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
83$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
89$C_2$ \( ( 1 + 78 T + p^{2} T^{2} )^{2} \)
97$C_2$ \( ( 1 - 130 T + p^{2} T^{2} )( 1 + 130 T + p^{2} T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.96062590567325815104023523697, −17.94885027651970621775195863569, −17.33399256142956227684504519776, −16.87855723835633671836689974348, −16.12067171012368066821763565845, −15.02155578445027214922818563134, −14.34275859722948862111176454258, −13.91615602008035128526283404749, −13.59782577234706309083810554246, −12.62713949989021404985482988469, −11.90550244298984676775472499594, −11.02542479449272167448992573251, −10.09372891876765178042217088505, −9.547024869041151195264697437329, −8.520031008385668286043288259253, −8.324070771202873362775595250013, −6.50419717571286079875050761495, −5.70955971770895197519786291105, −4.87586661189760822228494762830, −2.98280952584571453573837281815, 2.98280952584571453573837281815, 4.87586661189760822228494762830, 5.70955971770895197519786291105, 6.50419717571286079875050761495, 8.324070771202873362775595250013, 8.520031008385668286043288259253, 9.547024869041151195264697437329, 10.09372891876765178042217088505, 11.02542479449272167448992573251, 11.90550244298984676775472499594, 12.62713949989021404985482988469, 13.59782577234706309083810554246, 13.91615602008035128526283404749, 14.34275859722948862111176454258, 15.02155578445027214922818563134, 16.12067171012368066821763565845, 16.87855723835633671836689974348, 17.33399256142956227684504519776, 17.94885027651970621775195863569, 17.96062590567325815104023523697

Graph of the $Z$-function along the critical line