L(s) = 1 | − 4·4-s + 6·5-s − 18·9-s + 16·16-s − 24·20-s + 11·25-s + 84·29-s + 72·36-s − 36·41-s − 108·45-s − 98·49-s + 44·61-s − 64·64-s + 96·80-s + 243·81-s − 156·89-s − 44·100-s − 396·101-s + 364·109-s − 336·116-s + 242·121-s − 84·125-s + 127-s + 131-s + 137-s + 139-s − 288·144-s + ⋯ |
L(s) = 1 | − 4-s + 6/5·5-s − 2·9-s + 16-s − 6/5·20-s + 0.439·25-s + 2.89·29-s + 2·36-s − 0.878·41-s − 2.39·45-s − 2·49-s + 0.721·61-s − 64-s + 6/5·80-s + 3·81-s − 1.75·89-s − 0.439·100-s − 3.92·101-s + 3.33·109-s − 2.89·116-s + 2·121-s − 0.671·125-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s − 2·144-s + ⋯ |
Λ(s)=(=(400s/2ΓC(s)2L(s)Λ(3−s)
Λ(s)=(=(400s/2ΓC(s+1)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
400
= 24⋅52
|
Sign: |
1
|
Analytic conductor: |
0.296981 |
Root analytic conductor: |
0.738214 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 400, ( :1,1), 1)
|
Particular Values
L(23) |
≈ |
0.6871784578 |
L(21) |
≈ |
0.6871784578 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+p2T2 |
| 5 | C2 | 1−6T+p2T2 |
good | 3 | C2 | (1+p2T2)2 |
| 7 | C2 | (1+p2T2)2 |
| 11 | C1×C1 | (1−pT)2(1+pT)2 |
| 13 | C2 | (1−10T+p2T2)(1+10T+p2T2) |
| 17 | C2 | (1−30T+p2T2)(1+30T+p2T2) |
| 19 | C1×C1 | (1−pT)2(1+pT)2 |
| 23 | C2 | (1+p2T2)2 |
| 29 | C2 | (1−42T+p2T2)2 |
| 31 | C1×C1 | (1−pT)2(1+pT)2 |
| 37 | C2 | (1−70T+p2T2)(1+70T+p2T2) |
| 41 | C2 | (1+18T+p2T2)2 |
| 43 | C2 | (1+p2T2)2 |
| 47 | C2 | (1+p2T2)2 |
| 53 | C2 | (1−90T+p2T2)(1+90T+p2T2) |
| 59 | C1×C1 | (1−pT)2(1+pT)2 |
| 61 | C2 | (1−22T+p2T2)2 |
| 67 | C2 | (1+p2T2)2 |
| 71 | C1×C1 | (1−pT)2(1+pT)2 |
| 73 | C2 | (1−110T+p2T2)(1+110T+p2T2) |
| 79 | C1×C1 | (1−pT)2(1+pT)2 |
| 83 | C2 | (1+p2T2)2 |
| 89 | C2 | (1+78T+p2T2)2 |
| 97 | C2 | (1−130T+p2T2)(1+130T+p2T2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−17.96062590567325815104023523697, −17.94885027651970621775195863569, −17.33399256142956227684504519776, −16.87855723835633671836689974348, −16.12067171012368066821763565845, −15.02155578445027214922818563134, −14.34275859722948862111176454258, −13.91615602008035128526283404749, −13.59782577234706309083810554246, −12.62713949989021404985482988469, −11.90550244298984676775472499594, −11.02542479449272167448992573251, −10.09372891876765178042217088505, −9.547024869041151195264697437329, −8.520031008385668286043288259253, −8.324070771202873362775595250013, −6.50419717571286079875050761495, −5.70955971770895197519786291105, −4.87586661189760822228494762830, −2.98280952584571453573837281815,
2.98280952584571453573837281815, 4.87586661189760822228494762830, 5.70955971770895197519786291105, 6.50419717571286079875050761495, 8.324070771202873362775595250013, 8.520031008385668286043288259253, 9.547024869041151195264697437329, 10.09372891876765178042217088505, 11.02542479449272167448992573251, 11.90550244298984676775472499594, 12.62713949989021404985482988469, 13.59782577234706309083810554246, 13.91615602008035128526283404749, 14.34275859722948862111176454258, 15.02155578445027214922818563134, 16.12067171012368066821763565845, 16.87855723835633671836689974348, 17.33399256142956227684504519776, 17.94885027651970621775195863569, 17.96062590567325815104023523697