Properties

Label 4-2100e2-1.1-c0e2-0-5
Degree $4$
Conductor $4410000$
Sign $1$
Analytic cond. $1.09838$
Root an. cond. $1.02373$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 7-s + 2·13-s + 19-s + 21-s − 27-s + 31-s − 37-s + 2·39-s + 2·43-s + 57-s − 2·61-s − 67-s − 73-s + 79-s − 81-s + 2·91-s + 93-s − 4·97-s − 103-s + 109-s − 111-s − 121-s + 127-s + 2·129-s + 131-s + 133-s + ⋯
L(s)  = 1  + 3-s + 7-s + 2·13-s + 19-s + 21-s − 27-s + 31-s − 37-s + 2·39-s + 2·43-s + 57-s − 2·61-s − 67-s − 73-s + 79-s − 81-s + 2·91-s + 93-s − 4·97-s − 103-s + 109-s − 111-s − 121-s + 127-s + 2·129-s + 131-s + 133-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4410000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4410000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(4410000\)    =    \(2^{4} \cdot 3^{2} \cdot 5^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(1.09838\)
Root analytic conductor: \(1.02373\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 4410000,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(2.270372983\)
\(L(\frac12)\) \(\approx\) \(2.270372983\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 - T + T^{2} \)
5 \( 1 \)
7$C_2$ \( 1 - T + T^{2} \)
good11$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
13$C_2$ \( ( 1 - T + T^{2} )^{2} \)
17$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
19$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
23$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
29$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
31$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
37$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
43$C_2$ \( ( 1 - T + T^{2} )^{2} \)
47$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
53$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
59$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
61$C_2$ \( ( 1 + T + T^{2} )^{2} \)
67$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
73$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
79$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
89$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
97$C_1$ \( ( 1 + T )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.258382909569547025805667674720, −9.063148766285286058111763923686, −8.694874687235925772125525205307, −8.314970630063814253153812377420, −7.924998305668453547481101029377, −7.87092920713023970547036921702, −7.19377377164200225508075526760, −6.94415730565846520036423164473, −6.18489209929863460314776102203, −5.99399776503391756253281080173, −5.56460077915549840454955658839, −5.12115623995207422647500419242, −4.47053160587192487142143812776, −4.20535025278161870876941770682, −3.64453286963641089160591927539, −3.23767976057072387388573039143, −2.80493092091741748280397684123, −2.25636826028939486999697662223, −1.37010616076441982381736623887, −1.31695176450497151177794280628, 1.31695176450497151177794280628, 1.37010616076441982381736623887, 2.25636826028939486999697662223, 2.80493092091741748280397684123, 3.23767976057072387388573039143, 3.64453286963641089160591927539, 4.20535025278161870876941770682, 4.47053160587192487142143812776, 5.12115623995207422647500419242, 5.56460077915549840454955658839, 5.99399776503391756253281080173, 6.18489209929863460314776102203, 6.94415730565846520036423164473, 7.19377377164200225508075526760, 7.87092920713023970547036921702, 7.924998305668453547481101029377, 8.314970630063814253153812377420, 8.694874687235925772125525205307, 9.063148766285286058111763923686, 9.258382909569547025805667674720

Graph of the $Z$-function along the critical line