Properties

Label 4-2112e2-1.1-c1e2-0-22
Degree $4$
Conductor $4460544$
Sign $-1$
Analytic cond. $284.408$
Root an. cond. $4.10662$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 3·9-s − 4·11-s − 8·23-s − 10·25-s − 4·27-s − 4·31-s + 8·33-s + 12·37-s − 8·47-s + 6·49-s + 8·53-s + 8·59-s + 8·67-s + 16·69-s + 8·71-s + 20·75-s + 5·81-s − 4·89-s + 8·93-s + 12·97-s − 12·99-s − 12·103-s − 24·111-s − 4·113-s + 5·121-s + 127-s + ⋯
L(s)  = 1  − 1.15·3-s + 9-s − 1.20·11-s − 1.66·23-s − 2·25-s − 0.769·27-s − 0.718·31-s + 1.39·33-s + 1.97·37-s − 1.16·47-s + 6/7·49-s + 1.09·53-s + 1.04·59-s + 0.977·67-s + 1.92·69-s + 0.949·71-s + 2.30·75-s + 5/9·81-s − 0.423·89-s + 0.829·93-s + 1.21·97-s − 1.20·99-s − 1.18·103-s − 2.27·111-s − 0.376·113-s + 5/11·121-s + 0.0887·127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4460544 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4460544 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(4460544\)    =    \(2^{12} \cdot 3^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(284.408\)
Root analytic conductor: \(4.10662\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 4460544,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 + T )^{2} \)
11$C_2$ \( 1 + 4 T + p T^{2} \)
good5$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 + p T^{2} )^{2} \)
47$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
59$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
73$C_2^2$ \( 1 - 66 T^{2} + p^{2} T^{4} \)
79$C_2^2$ \( 1 + 42 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.07641104884056435139819806889, −6.73638794275886190021986641926, −6.19951579414602576430835795528, −5.88213205104872133241524618721, −5.57173953373637205295252912936, −5.25918397348436745237982895745, −4.74562682915512166148308984470, −4.12188479494691834847210109401, −3.96990974048973940554899541664, −3.42107966854588931282020215251, −2.46913686410446462838923871373, −2.27948613892252072252465087023, −1.60965270260187357525323612604, −0.67942463774858439823406722310, 0, 0.67942463774858439823406722310, 1.60965270260187357525323612604, 2.27948613892252072252465087023, 2.46913686410446462838923871373, 3.42107966854588931282020215251, 3.96990974048973940554899541664, 4.12188479494691834847210109401, 4.74562682915512166148308984470, 5.25918397348436745237982895745, 5.57173953373637205295252912936, 5.88213205104872133241524618721, 6.19951579414602576430835795528, 6.73638794275886190021986641926, 7.07641104884056435139819806889

Graph of the $Z$-function along the critical line