L(s) = 1 | − 2-s − 3·3-s − 5-s + 3·6-s + 2·7-s + 8-s + 6·9-s + 10-s − 4·11-s − 7·13-s − 2·14-s + 3·15-s − 16-s − 7·17-s − 6·18-s − 19-s − 6·21-s + 4·22-s + 6·23-s − 3·24-s + 5·25-s + 7·26-s − 9·27-s − 6·29-s − 3·30-s + 7·31-s + 12·33-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1.73·3-s − 0.447·5-s + 1.22·6-s + 0.755·7-s + 0.353·8-s + 2·9-s + 0.316·10-s − 1.20·11-s − 1.94·13-s − 0.534·14-s + 0.774·15-s − 1/4·16-s − 1.69·17-s − 1.41·18-s − 0.229·19-s − 1.30·21-s + 0.852·22-s + 1.25·23-s − 0.612·24-s + 25-s + 1.37·26-s − 1.73·27-s − 1.11·29-s − 0.547·30-s + 1.25·31-s + 2.08·33-s + ⋯ |
Λ(s)=(=(54756s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(54756s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
54756
= 22⋅34⋅132
|
Sign: |
1
|
Analytic conductor: |
3.49129 |
Root analytic conductor: |
1.36693 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 54756, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.2504835501 |
L(21) |
≈ |
0.2504835501 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T+T2 |
| 3 | C2 | 1+pT+pT2 |
| 13 | C2 | 1+7T+pT2 |
good | 5 | C22 | 1+T−4T2+pT3+p2T4 |
| 7 | C2 | (1−T+pT2)2 |
| 11 | C22 | 1+4T+5T2+4pT3+p2T4 |
| 17 | C22 | 1+7T+32T2+7pT3+p2T4 |
| 19 | C2 | (1−7T+pT2)(1+8T+pT2) |
| 23 | C2 | (1−3T+pT2)2 |
| 29 | C22 | 1+6T+7T2+6pT3+p2T4 |
| 31 | C2 | (1−11T+pT2)(1+4T+pT2) |
| 37 | C2 | (1−10T+pT2)(1+11T+pT2) |
| 41 | C2 | (1−7T+pT2)2 |
| 43 | C2 | (1+5T+pT2)2 |
| 47 | C22 | 1+7T+2T2+7pT3+p2T4 |
| 53 | C2 | (1+2T+pT2)2 |
| 59 | C22 | 1−4T−43T2−4pT3+p2T4 |
| 61 | C2 | (1−13T+pT2)2 |
| 67 | C2 | (1−5T+pT2)2 |
| 71 | C22 | 1−T−70T2−pT3+p2T4 |
| 73 | C2 | (1+10T+pT2)2 |
| 79 | C2 | (1−17T+pT2)(1+4T+pT2) |
| 83 | C22 | 1+9T−2T2+9pT3+p2T4 |
| 89 | C22 | 1+7T−40T2+7pT3+p2T4 |
| 97 | C2 | (1−7T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.62950336776362834288227477311, −11.54384456155282791138014500674, −11.41921024566657346546370159419, −11.06118567233736727189840807078, −10.64559148883535576790675336170, −10.02763807828278873677062399261, −9.738516245441740608924730830309, −9.127621579876917035966212246415, −8.294237611889375955705362533278, −8.063066597226526063443247626508, −7.34149075361801390177133548258, −6.78377365433153306261818581578, −6.70635440531745501244315141001, −5.42447070190230526907917088766, −5.24356280733702663316269759244, −4.53130058097212535294355118558, −4.45669170973107871790583799204, −2.86502920266357870826712876930, −1.97517693997973803964703024685, −0.50158623033298012806731316187,
0.50158623033298012806731316187, 1.97517693997973803964703024685, 2.86502920266357870826712876930, 4.45669170973107871790583799204, 4.53130058097212535294355118558, 5.24356280733702663316269759244, 5.42447070190230526907917088766, 6.70635440531745501244315141001, 6.78377365433153306261818581578, 7.34149075361801390177133548258, 8.063066597226526063443247626508, 8.294237611889375955705362533278, 9.127621579876917035966212246415, 9.738516245441740608924730830309, 10.02763807828278873677062399261, 10.64559148883535576790675336170, 11.06118567233736727189840807078, 11.41921024566657346546370159419, 11.54384456155282791138014500674, 12.62950336776362834288227477311