Properties

Label 4-234e2-1.1-c1e2-0-1
Degree $4$
Conductor $54756$
Sign $1$
Analytic cond. $3.49129$
Root an. cond. $1.36693$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3·3-s − 5-s + 3·6-s + 2·7-s + 8-s + 6·9-s + 10-s − 4·11-s − 7·13-s − 2·14-s + 3·15-s − 16-s − 7·17-s − 6·18-s − 19-s − 6·21-s + 4·22-s + 6·23-s − 3·24-s + 5·25-s + 7·26-s − 9·27-s − 6·29-s − 3·30-s + 7·31-s + 12·33-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.73·3-s − 0.447·5-s + 1.22·6-s + 0.755·7-s + 0.353·8-s + 2·9-s + 0.316·10-s − 1.20·11-s − 1.94·13-s − 0.534·14-s + 0.774·15-s − 1/4·16-s − 1.69·17-s − 1.41·18-s − 0.229·19-s − 1.30·21-s + 0.852·22-s + 1.25·23-s − 0.612·24-s + 25-s + 1.37·26-s − 1.73·27-s − 1.11·29-s − 0.547·30-s + 1.25·31-s + 2.08·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 54756 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 54756 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(54756\)    =    \(2^{2} \cdot 3^{4} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(3.49129\)
Root analytic conductor: \(1.36693\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 54756,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2504835501\)
\(L(\frac12)\) \(\approx\) \(0.2504835501\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T + T^{2} \)
3$C_2$ \( 1 + p T + p T^{2} \)
13$C_2$ \( 1 + 7 T + p T^{2} \)
good5$C_2^2$ \( 1 + T - 4 T^{2} + p T^{3} + p^{2} T^{4} \)
7$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
11$C_2^2$ \( 1 + 4 T + 5 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 7 T + 32 T^{2} + 7 p T^{3} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
29$C_2^2$ \( 1 + 6 T + 7 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 7 T + 2 T^{2} + 7 p T^{3} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 - 4 T - 43 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 13 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
71$C_2^2$ \( 1 - T - 70 T^{2} - p T^{3} + p^{2} T^{4} \)
73$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 17 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2^2$ \( 1 + 9 T - 2 T^{2} + 9 p T^{3} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 7 T - 40 T^{2} + 7 p T^{3} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.62950336776362834288227477311, −11.54384456155282791138014500674, −11.41921024566657346546370159419, −11.06118567233736727189840807078, −10.64559148883535576790675336170, −10.02763807828278873677062399261, −9.738516245441740608924730830309, −9.127621579876917035966212246415, −8.294237611889375955705362533278, −8.063066597226526063443247626508, −7.34149075361801390177133548258, −6.78377365433153306261818581578, −6.70635440531745501244315141001, −5.42447070190230526907917088766, −5.24356280733702663316269759244, −4.53130058097212535294355118558, −4.45669170973107871790583799204, −2.86502920266357870826712876930, −1.97517693997973803964703024685, −0.50158623033298012806731316187, 0.50158623033298012806731316187, 1.97517693997973803964703024685, 2.86502920266357870826712876930, 4.45669170973107871790583799204, 4.53130058097212535294355118558, 5.24356280733702663316269759244, 5.42447070190230526907917088766, 6.70635440531745501244315141001, 6.78377365433153306261818581578, 7.34149075361801390177133548258, 8.063066597226526063443247626508, 8.294237611889375955705362533278, 9.127621579876917035966212246415, 9.738516245441740608924730830309, 10.02763807828278873677062399261, 10.64559148883535576790675336170, 11.06118567233736727189840807078, 11.41921024566657346546370159419, 11.54384456155282791138014500674, 12.62950336776362834288227477311

Graph of the $Z$-function along the critical line