Properties

Label 4-234e2-1.1-c5e2-0-1
Degree $4$
Conductor $54756$
Sign $1$
Analytic cond. $1408.48$
Root an. cond. $6.12615$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16·4-s − 1.19e3·13-s + 256·16-s + 2.20e3·17-s − 2.10e3·23-s + 3.64e3·25-s + 8.20e3·29-s + 1.99e4·43-s + 2.25e4·49-s + 1.91e4·52-s + 1.50e3·53-s − 1.15e5·61-s − 4.09e3·64-s − 3.52e4·68-s + 1.26e5·79-s + 3.36e4·92-s − 5.83e4·100-s + 2.26e5·101-s + 5.00e4·103-s − 4.98e4·107-s − 2.00e5·113-s − 1.31e5·116-s + 3.07e5·121-s + 127-s + 131-s + 137-s + 139-s + ⋯
L(s)  = 1  − 1/2·4-s − 1.96·13-s + 1/4·16-s + 1.84·17-s − 0.827·23-s + 1.16·25-s + 1.81·29-s + 1.64·43-s + 1.34·49-s + 0.981·52-s + 0.0733·53-s − 3.98·61-s − 1/8·64-s − 0.923·68-s + 2.27·79-s + 0.413·92-s − 0.583·100-s + 2.20·101-s + 0.465·103-s − 0.420·107-s − 1.47·113-s − 0.906·116-s + 1.91·121-s + 5.50e−6·127-s + 5.09e−6·131-s + 4.55e−6·137-s + 4.38e−6·139-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 54756 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 54756 ^{s/2} \, \Gamma_{\C}(s+5/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(54756\)    =    \(2^{2} \cdot 3^{4} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(1408.48\)
Root analytic conductor: \(6.12615\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 54756,\ (\ :5/2, 5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.181678003\)
\(L(\frac12)\) \(\approx\) \(2.181678003\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p^{4} T^{2} \)
3 \( 1 \)
13$C_2$ \( 1 + 92 p T + p^{5} T^{2} \)
good5$C_2^2$ \( 1 - 3649 T^{2} + p^{10} T^{4} \)
7$C_2^2$ \( 1 - 461 p^{2} T^{2} + p^{10} T^{4} \)
11$C_2^2$ \( 1 - 307702 T^{2} + p^{10} T^{4} \)
17$C_2$ \( ( 1 - 1101 T + p^{5} T^{2} )^{2} \)
19$C_2^2$ \( 1 - 3583298 T^{2} + p^{10} T^{4} \)
23$C_2$ \( ( 1 + 1050 T + p^{5} T^{2} )^{2} \)
29$C_2$ \( ( 1 - 4104 T + p^{5} T^{2} )^{2} \)
31$C_2^2$ \( 1 + 35363074 T^{2} + p^{10} T^{4} \)
37$C_2^2$ \( 1 - 62841233 T^{2} + p^{10} T^{4} \)
41$C_2^2$ \( 1 - 141842002 T^{2} + p^{10} T^{4} \)
43$C_2$ \( ( 1 - 9995 T + p^{5} T^{2} )^{2} \)
47$C_2^2$ \( 1 - 450028765 T^{2} + p^{10} T^{4} \)
53$C_2$ \( ( 1 - 750 T + p^{5} T^{2} )^{2} \)
59$C_2^2$ \( 1 + 246071246 T^{2} + p^{10} T^{4} \)
61$C_2$ \( ( 1 + 57920 T + p^{5} T^{2} )^{2} \)
67$C_2^2$ \( 1 - 2179862870 T^{2} + p^{10} T^{4} \)
71$C_2^2$ \( 1 + 454456379 T^{2} + p^{10} T^{4} \)
73$C_2^2$ \( 1 - 680937230 T^{2} + p^{10} T^{4} \)
79$C_2$ \( ( 1 - 63202 T + p^{5} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 4802491522 T^{2} + p^{10} T^{4} \)
89$C_2^2$ \( 1 - 189689614 T^{2} + p^{10} T^{4} \)
97$C_2^2$ \( 1 + 8570163790 T^{2} + p^{10} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.01564722989896368056223299065, −10.85941592912127044059202774695, −10.41389127526647543608719727596, −10.23679384610399907726125006126, −9.502633645548166488651127554080, −9.302176830956230348269183314698, −8.662558588919773944038673621331, −7.911105876696710420724617482656, −7.69034022700876328380984609525, −7.20402634972305475145049259457, −6.46717429904714964533298894295, −5.84144785520744976759359268610, −5.31584219160445818996791528294, −4.63755667528941151464541650240, −4.41321701233527808421709477405, −3.33124898745015316029784352709, −2.88290570232400841982222788082, −2.14130213880402589254586535111, −1.07623588320045590845175062375, −0.50840447317880579821769245286, 0.50840447317880579821769245286, 1.07623588320045590845175062375, 2.14130213880402589254586535111, 2.88290570232400841982222788082, 3.33124898745015316029784352709, 4.41321701233527808421709477405, 4.63755667528941151464541650240, 5.31584219160445818996791528294, 5.84144785520744976759359268610, 6.46717429904714964533298894295, 7.20402634972305475145049259457, 7.69034022700876328380984609525, 7.911105876696710420724617482656, 8.662558588919773944038673621331, 9.302176830956230348269183314698, 9.502633645548166488651127554080, 10.23679384610399907726125006126, 10.41389127526647543608719727596, 10.85941592912127044059202774695, 12.01564722989896368056223299065

Graph of the $Z$-function along the critical line