L(s) = 1 | − 3·9-s − 14·13-s + 10·25-s − 2·37-s − 28·61-s − 14·73-s + 9·81-s + 28·97-s − 34·109-s + 42·117-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 121·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + ⋯ |
L(s) = 1 | − 9-s − 3.88·13-s + 2·25-s − 0.328·37-s − 3.58·61-s − 1.63·73-s + 81-s + 2.84·97-s − 3.25·109-s + 3.88·117-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 9.30·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + ⋯ |
Λ(s)=(=(5531904s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(5531904s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
5531904
= 28⋅32⋅74
|
Sign: |
1
|
Analytic conductor: |
352.718 |
Root analytic conductor: |
4.33368 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 5531904, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.1582780393 |
L(21) |
≈ |
0.1582780393 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1+pT2 |
| 7 | | 1 |
good | 5 | C2 | (1−pT2)2 |
| 11 | C2 | (1+pT2)2 |
| 13 | C2 | (1+7T+pT2)2 |
| 17 | C2 | (1−pT2)2 |
| 19 | C2 | (1−7T+pT2)(1+7T+pT2) |
| 23 | C2 | (1+pT2)2 |
| 29 | C2 | (1−pT2)2 |
| 31 | C2 | (1−7T+pT2)(1+7T+pT2) |
| 37 | C2 | (1+T+pT2)2 |
| 41 | C2 | (1−pT2)2 |
| 43 | C2 | (1−5T+pT2)(1+5T+pT2) |
| 47 | C2 | (1+pT2)2 |
| 53 | C2 | (1−pT2)2 |
| 59 | C2 | (1+pT2)2 |
| 61 | C2 | (1+14T+pT2)2 |
| 67 | C2 | (1−11T+pT2)(1+11T+pT2) |
| 71 | C2 | (1+pT2)2 |
| 73 | C2 | (1+7T+pT2)2 |
| 79 | C2 | (1−13T+pT2)(1+13T+pT2) |
| 83 | C2 | (1+pT2)2 |
| 89 | C2 | (1−pT2)2 |
| 97 | C2 | (1−14T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.057388009487985982741926637639, −9.053035966969722108950545627598, −8.366364291848424234648865922414, −8.000943590282717289561775407830, −7.41954774703763249464139903326, −7.38269028665345657070837334659, −7.07186959440517697353335820752, −6.33533873425176335963614904931, −6.25360107049326898120551386870, −5.45255514103565750986780914797, −5.15218771369243878379535029525, −4.80144729616672893954543188408, −4.65571740471496100887281170939, −4.01026648894047029139493730596, −3.03115392900874834067879813453, −3.03048460560840127825364430557, −2.51263898296052585980890995263, −2.10559207402222168616955538853, −1.24460249660826580575757902951, −0.13523685308600440766328821257,
0.13523685308600440766328821257, 1.24460249660826580575757902951, 2.10559207402222168616955538853, 2.51263898296052585980890995263, 3.03048460560840127825364430557, 3.03115392900874834067879813453, 4.01026648894047029139493730596, 4.65571740471496100887281170939, 4.80144729616672893954543188408, 5.15218771369243878379535029525, 5.45255514103565750986780914797, 6.25360107049326898120551386870, 6.33533873425176335963614904931, 7.07186959440517697353335820752, 7.38269028665345657070837334659, 7.41954774703763249464139903326, 8.000943590282717289561775407830, 8.366364291848424234648865922414, 9.053035966969722108950545627598, 9.057388009487985982741926637639