L(s) = 1 | + 3-s + 8·13-s − 4·17-s − 4·19-s + 4·23-s + 5·25-s − 27-s + 4·29-s + 8·31-s + 6·37-s + 8·39-s + 24·41-s − 8·43-s − 8·47-s − 4·51-s − 6·53-s − 4·57-s + 12·59-s − 4·61-s − 4·67-s + 4·69-s + 24·71-s − 8·73-s + 5·75-s − 16·79-s − 81-s + 8·83-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 2.21·13-s − 0.970·17-s − 0.917·19-s + 0.834·23-s + 25-s − 0.192·27-s + 0.742·29-s + 1.43·31-s + 0.986·37-s + 1.28·39-s + 3.74·41-s − 1.21·43-s − 1.16·47-s − 0.560·51-s − 0.824·53-s − 0.529·57-s + 1.56·59-s − 0.512·61-s − 0.488·67-s + 0.481·69-s + 2.84·71-s − 0.936·73-s + 0.577·75-s − 1.80·79-s − 1/9·81-s + 0.878·83-s + ⋯ |
Λ(s)=(=(5531904s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(5531904s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
5531904
= 28⋅32⋅74
|
Sign: |
1
|
Analytic conductor: |
352.718 |
Root analytic conductor: |
4.33368 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 5531904, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
4.115681547 |
L(21) |
≈ |
4.115681547 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1−T+T2 |
| 7 | | 1 |
good | 5 | C22 | 1−pT2+p2T4 |
| 11 | C22 | 1−pT2+p2T4 |
| 13 | C2 | (1−4T+pT2)2 |
| 17 | C22 | 1+4T−T2+4pT3+p2T4 |
| 19 | C22 | 1+4T−3T2+4pT3+p2T4 |
| 23 | C22 | 1−4T−7T2−4pT3+p2T4 |
| 29 | C2 | (1−2T+pT2)2 |
| 31 | C22 | 1−8T+33T2−8pT3+p2T4 |
| 37 | C22 | 1−6T−T2−6pT3+p2T4 |
| 41 | C2 | (1−12T+pT2)2 |
| 43 | C2 | (1+4T+pT2)2 |
| 47 | C22 | 1+8T+17T2+8pT3+p2T4 |
| 53 | C22 | 1+6T−17T2+6pT3+p2T4 |
| 59 | C22 | 1−12T+85T2−12pT3+p2T4 |
| 61 | C22 | 1+4T−45T2+4pT3+p2T4 |
| 67 | C22 | 1+4T−51T2+4pT3+p2T4 |
| 71 | C2 | (1−12T+pT2)2 |
| 73 | C22 | 1+8T−9T2+8pT3+p2T4 |
| 79 | C22 | 1+16T+177T2+16pT3+p2T4 |
| 83 | C2 | (1−4T+pT2)2 |
| 89 | C22 | 1+4T−73T2+4pT3+p2T4 |
| 97 | C2 | (1−16T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.007185249115097111108239654797, −8.647414456956895549131623634688, −8.511698711921782716912394959008, −8.264866015736882378246548907461, −7.66567161028868062537591796497, −7.36502253768838549777739257030, −6.72609398785033602049816263354, −6.39996414405837680276046204512, −6.08768281995334148542535537053, −6.00009195851450917541224248759, −5.01931482159563157529158068911, −4.80047134326542298234796424976, −4.26651351612792413368214502230, −3.98012658882641848945314401863, −3.36817634719777948670928236867, −2.97562772599965526826548669934, −2.48651146526484512858525168945, −1.99663048957667265718299553985, −1.10923660635782683757001710235, −0.802156786276615521585753358598,
0.802156786276615521585753358598, 1.10923660635782683757001710235, 1.99663048957667265718299553985, 2.48651146526484512858525168945, 2.97562772599965526826548669934, 3.36817634719777948670928236867, 3.98012658882641848945314401863, 4.26651351612792413368214502230, 4.80047134326542298234796424976, 5.01931482159563157529158068911, 6.00009195851450917541224248759, 6.08768281995334148542535537053, 6.39996414405837680276046204512, 6.72609398785033602049816263354, 7.36502253768838549777739257030, 7.66567161028868062537591796497, 8.264866015736882378246548907461, 8.511698711921782716912394959008, 8.647414456956895549131623634688, 9.007185249115097111108239654797