L(s) = 1 | − 3·3-s + 6·9-s − 7·19-s − 5·25-s − 9·27-s + 13·49-s + 21·57-s − 21·67-s − 24·73-s + 15·75-s + 9·81-s − 11·121-s + 127-s + 131-s + 137-s + 139-s − 39·147-s + 149-s + 151-s + 157-s + 163-s + 167-s − 23·169-s − 42·171-s + 173-s + 179-s + 181-s + ⋯ |
L(s) = 1 | − 1.73·3-s + 2·9-s − 1.60·19-s − 25-s − 1.73·27-s + 13/7·49-s + 2.78·57-s − 2.56·67-s − 2.80·73-s + 1.73·75-s + 81-s − 121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 3.21·147-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.76·169-s − 3.21·171-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯ |
Λ(s)=(=(57600s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(57600s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
57600
= 28⋅32⋅52
|
Sign: |
−1
|
Analytic conductor: |
3.67262 |
Root analytic conductor: |
1.38434 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 57600, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1+pT+pT2 |
| 5 | C2 | 1+pT2 |
good | 7 | C22 | 1−13T2+p2T4 |
| 11 | C22 | 1+pT2+p2T4 |
| 13 | C22 | 1+23T2+p2T4 |
| 17 | C22 | 1−pT2+p2T4 |
| 19 | C2 | (1−T+pT2)(1+8T+pT2) |
| 23 | C2 | (1+pT2)2 |
| 29 | C2 | (1+pT2)2 |
| 31 | C2 | (1−11T+pT2)(1+11T+pT2) |
| 37 | C22 | 1+26T2+p2T4 |
| 41 | C22 | 1+pT2+p2T4 |
| 43 | C2 | (1−13T+pT2)(1+13T+pT2) |
| 47 | C2 | (1+pT2)2 |
| 53 | C2 | (1+pT2)2 |
| 59 | C2 | (1−pT2)2 |
| 61 | C2 | (1−T+pT2)(1+T+pT2) |
| 67 | C2 | (1+5T+pT2)(1+16T+pT2) |
| 71 | C2 | (1+pT2)2 |
| 73 | C2 | (1+7T+pT2)(1+17T+pT2) |
| 79 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 83 | C22 | 1−pT2+p2T4 |
| 89 | C22 | 1+pT2+p2T4 |
| 97 | C2 | (1−19T+pT2)(1+19T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.03289735748629283952937134769, −9.270981567679906681995908952508, −8.784774390971334014644934694365, −8.189478920900444648462771977182, −7.36990395992700175941088900995, −7.14839517916630981371693058846, −6.37808766560145263834313988983, −5.90629154350294878239687671104, −5.69678869113846324851276172303, −4.74937257504541601053316791273, −4.39738860790570192073165449065, −3.74799988141654562579655820524, −2.51332371484229190745930153240, −1.47089399278593014390941848189, 0,
1.47089399278593014390941848189, 2.51332371484229190745930153240, 3.74799988141654562579655820524, 4.39738860790570192073165449065, 4.74937257504541601053316791273, 5.69678869113846324851276172303, 5.90629154350294878239687671104, 6.37808766560145263834313988983, 7.14839517916630981371693058846, 7.36990395992700175941088900995, 8.189478920900444648462771977182, 8.784774390971334014644934694365, 9.270981567679906681995908952508, 10.03289735748629283952937134769