Properties

Label 4-240e2-1.1-c1e2-0-24
Degree $4$
Conductor $57600$
Sign $-1$
Analytic cond. $3.67262$
Root an. cond. $1.38434$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 6·9-s − 7·19-s − 5·25-s − 9·27-s + 13·49-s + 21·57-s − 21·67-s − 24·73-s + 15·75-s + 9·81-s − 11·121-s + 127-s + 131-s + 137-s + 139-s − 39·147-s + 149-s + 151-s + 157-s + 163-s + 167-s − 23·169-s − 42·171-s + 173-s + 179-s + 181-s + ⋯
L(s)  = 1  − 1.73·3-s + 2·9-s − 1.60·19-s − 25-s − 1.73·27-s + 13/7·49-s + 2.78·57-s − 2.56·67-s − 2.80·73-s + 1.73·75-s + 81-s − 121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 3.21·147-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.76·169-s − 3.21·171-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 57600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 57600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(57600\)    =    \(2^{8} \cdot 3^{2} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(3.67262\)
Root analytic conductor: \(1.38434\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 57600,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + p T + p T^{2} \)
5$C_2$ \( 1 + p T^{2} \)
good7$C_2^2$ \( 1 - 13 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 23 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
37$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 13 T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - p T^{2} )^{2} \)
61$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
67$C_2$ \( ( 1 + 5 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 7 T + p T^{2} )( 1 + 17 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 19 T + p T^{2} )( 1 + 19 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.03289735748629283952937134769, −9.270981567679906681995908952508, −8.784774390971334014644934694365, −8.189478920900444648462771977182, −7.36990395992700175941088900995, −7.14839517916630981371693058846, −6.37808766560145263834313988983, −5.90629154350294878239687671104, −5.69678869113846324851276172303, −4.74937257504541601053316791273, −4.39738860790570192073165449065, −3.74799988141654562579655820524, −2.51332371484229190745930153240, −1.47089399278593014390941848189, 0, 1.47089399278593014390941848189, 2.51332371484229190745930153240, 3.74799988141654562579655820524, 4.39738860790570192073165449065, 4.74937257504541601053316791273, 5.69678869113846324851276172303, 5.90629154350294878239687671104, 6.37808766560145263834313988983, 7.14839517916630981371693058846, 7.36990395992700175941088900995, 8.189478920900444648462771977182, 8.784774390971334014644934694365, 9.270981567679906681995908952508, 10.03289735748629283952937134769

Graph of the $Z$-function along the critical line