Properties

Label 4-240e2-1.1-c1e2-0-27
Degree $4$
Conductor $57600$
Sign $-1$
Analytic cond. $3.67262$
Root an. cond. $1.38434$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 4·7-s + 9-s + 2·11-s − 2·13-s + 4·16-s + 4·17-s − 4·19-s + 8·23-s − 5·25-s + 8·28-s − 6·29-s + 2·31-s − 2·36-s − 10·37-s − 4·41-s − 12·43-s − 4·44-s + 8·47-s + 2·49-s + 4·52-s − 2·59-s − 14·61-s − 4·63-s − 8·64-s − 4·67-s − 8·68-s + ⋯
L(s)  = 1  − 4-s − 1.51·7-s + 1/3·9-s + 0.603·11-s − 0.554·13-s + 16-s + 0.970·17-s − 0.917·19-s + 1.66·23-s − 25-s + 1.51·28-s − 1.11·29-s + 0.359·31-s − 1/3·36-s − 1.64·37-s − 0.624·41-s − 1.82·43-s − 0.603·44-s + 1.16·47-s + 2/7·49-s + 0.554·52-s − 0.260·59-s − 1.79·61-s − 0.503·63-s − 64-s − 0.488·67-s − 0.970·68-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 57600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 57600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(57600\)    =    \(2^{8} \cdot 3^{2} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(3.67262\)
Root analytic conductor: \(1.38434\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 57600,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T^{2} \)
3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
5$C_2$ \( 1 + p T^{2} \)
good7$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$D_{4}$ \( 1 + 2 T + 6 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 - 4 T + 30 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
19$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
23$D_{4}$ \( 1 - 8 T + 38 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 + 6 T + 50 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 - 2 T - 6 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 + 10 T + 78 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
41$C_4$ \( 1 + 4 T + 6 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 12 T + 102 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 - 8 T + 62 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
59$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
61$D_{4}$ \( 1 + 14 T + 114 T^{2} + 14 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 + 4 T + 6 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
71$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$D_{4}$ \( 1 - 10 T + 114 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 2 T - 38 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
83$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 6 T + 138 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.8595826501, −14.3820983435, −13.7410216765, −13.4512544705, −13.1203440067, −12.5766943432, −12.2093864102, −11.9594843409, −11.0713887673, −10.5604845975, −10.0406635436, −9.69164586099, −9.34365210340, −8.81028299029, −8.40099932774, −7.54559136120, −7.21584134111, −6.48002006446, −6.13128908222, −5.26829567139, −4.91780353436, −3.97563996350, −3.54080710729, −2.96031601073, −1.57454212811, 0, 1.57454212811, 2.96031601073, 3.54080710729, 3.97563996350, 4.91780353436, 5.26829567139, 6.13128908222, 6.48002006446, 7.21584134111, 7.54559136120, 8.40099932774, 8.81028299029, 9.34365210340, 9.69164586099, 10.0406635436, 10.5604845975, 11.0713887673, 11.9594843409, 12.2093864102, 12.5766943432, 13.1203440067, 13.4512544705, 13.7410216765, 14.3820983435, 14.8595826501

Graph of the $Z$-function along the critical line