L(s) = 1 | − 4·7-s + 9-s − 4·17-s − 12·23-s + 25-s + 4·41-s − 4·47-s + 2·49-s − 4·63-s − 8·71-s − 12·73-s − 8·79-s + 81-s − 12·89-s − 12·97-s + 4·103-s + 12·113-s + 16·119-s + 10·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 4·153-s + 157-s + ⋯ |
L(s) = 1 | − 1.51·7-s + 1/3·9-s − 0.970·17-s − 2.50·23-s + 1/5·25-s + 0.624·41-s − 0.583·47-s + 2/7·49-s − 0.503·63-s − 0.949·71-s − 1.40·73-s − 0.900·79-s + 1/9·81-s − 1.27·89-s − 1.21·97-s + 0.394·103-s + 1.12·113-s + 1.46·119-s + 0.909·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 0.323·153-s + 0.0798·157-s + ⋯ |
Λ(s)=(=(57600s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(57600s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
57600
= 28⋅32⋅52
|
Sign: |
−1
|
Analytic conductor: |
3.67262 |
Root analytic conductor: |
1.38434 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 57600, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1×C1 | (1−T)(1+T) |
| 5 | C1×C1 | (1−T)(1+T) |
good | 7 | C2×C2 | (1+pT2)(1+4T+pT2) |
| 11 | C22 | 1−10T2+p2T4 |
| 13 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 17 | C2×C2 | (1−2T+pT2)(1+6T+pT2) |
| 19 | C22 | 1+6T2+p2T4 |
| 23 | C2×C2 | (1+4T+pT2)(1+8T+pT2) |
| 29 | C2 | (1−pT2)2 |
| 31 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 37 | C22 | 1−10T2+p2T4 |
| 41 | C2 | (1−2T+pT2)2 |
| 43 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 47 | C2×C2 | (1+pT2)(1+4T+pT2) |
| 53 | C22 | 1+22T2+p2T4 |
| 59 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 61 | C22 | 1+70T2+p2T4 |
| 67 | C22 | 1+86T2+p2T4 |
| 71 | C2×C2 | (1−8T+pT2)(1+16T+pT2) |
| 73 | C2×C2 | (1+2T+pT2)(1+10T+pT2) |
| 79 | C2×C2 | (1−8T+pT2)(1+16T+pT2) |
| 83 | C22 | 1−10T2+p2T4 |
| 89 | C2 | (1+6T+pT2)2 |
| 97 | C2×C2 | (1+2T+pT2)(1+10T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.789558936963360670762164057052, −9.432331843962428674696661297451, −8.651227420043199698826817811666, −8.349861868559778434364327135898, −7.58552861389566241021822241490, −7.08242127393491403183760755045, −6.54113518303047890819319823827, −6.03142414243910032413180227612, −5.69872404151448590531497577728, −4.58279675140756191403136982971, −4.17610479998371727321127812323, −3.45201131090447634672216722360, −2.73019489142800131650849040974, −1.82414167365812974415618269325, 0,
1.82414167365812974415618269325, 2.73019489142800131650849040974, 3.45201131090447634672216722360, 4.17610479998371727321127812323, 4.58279675140756191403136982971, 5.69872404151448590531497577728, 6.03142414243910032413180227612, 6.54113518303047890819319823827, 7.08242127393491403183760755045, 7.58552861389566241021822241490, 8.349861868559778434364327135898, 8.651227420043199698826817811666, 9.432331843962428674696661297451, 9.789558936963360670762164057052