Properties

Label 4-240e2-1.1-c1e2-0-34
Degree $4$
Conductor $57600$
Sign $-1$
Analytic cond. $3.67262$
Root an. cond. $1.38434$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s + 9-s − 4·17-s − 12·23-s + 25-s + 4·41-s − 4·47-s + 2·49-s − 4·63-s − 8·71-s − 12·73-s − 8·79-s + 81-s − 12·89-s − 12·97-s + 4·103-s + 12·113-s + 16·119-s + 10·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 4·153-s + 157-s + ⋯
L(s)  = 1  − 1.51·7-s + 1/3·9-s − 0.970·17-s − 2.50·23-s + 1/5·25-s + 0.624·41-s − 0.583·47-s + 2/7·49-s − 0.503·63-s − 0.949·71-s − 1.40·73-s − 0.900·79-s + 1/9·81-s − 1.27·89-s − 1.21·97-s + 0.394·103-s + 1.12·113-s + 1.46·119-s + 0.909·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 0.323·153-s + 0.0798·157-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 57600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 57600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(57600\)    =    \(2^{8} \cdot 3^{2} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(3.67262\)
Root analytic conductor: \(1.38434\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 57600,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good7$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2$ \( ( 1 - p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
47$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \)
53$C_2^2$ \( 1 + 22 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
61$C_2^2$ \( 1 + 70 T^{2} + p^{2} T^{4} \)
67$C_2^2$ \( 1 + 86 T^{2} + p^{2} T^{4} \)
71$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.789558936963360670762164057052, −9.432331843962428674696661297451, −8.651227420043199698826817811666, −8.349861868559778434364327135898, −7.58552861389566241021822241490, −7.08242127393491403183760755045, −6.54113518303047890819319823827, −6.03142414243910032413180227612, −5.69872404151448590531497577728, −4.58279675140756191403136982971, −4.17610479998371727321127812323, −3.45201131090447634672216722360, −2.73019489142800131650849040974, −1.82414167365812974415618269325, 0, 1.82414167365812974415618269325, 2.73019489142800131650849040974, 3.45201131090447634672216722360, 4.17610479998371727321127812323, 4.58279675140756191403136982971, 5.69872404151448590531497577728, 6.03142414243910032413180227612, 6.54113518303047890819319823827, 7.08242127393491403183760755045, 7.58552861389566241021822241490, 8.349861868559778434364327135898, 8.651227420043199698826817811666, 9.432331843962428674696661297451, 9.789558936963360670762164057052

Graph of the $Z$-function along the critical line