L(s) = 1 | − 9-s − 4·11-s − 8·19-s − 5·25-s − 8·29-s − 8·31-s + 4·41-s − 6·49-s + 4·59-s + 4·61-s + 24·71-s + 8·79-s + 81-s + 4·89-s + 4·99-s − 8·101-s − 4·109-s + 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯ |
L(s) = 1 | − 1/3·9-s − 1.20·11-s − 1.83·19-s − 25-s − 1.48·29-s − 1.43·31-s + 0.624·41-s − 6/7·49-s + 0.520·59-s + 0.512·61-s + 2.84·71-s + 0.900·79-s + 1/9·81-s + 0.423·89-s + 0.402·99-s − 0.796·101-s − 0.383·109-s + 6/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯ |
Λ(s)=(=(57600s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(57600s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
57600
= 28⋅32⋅52
|
Sign: |
−1
|
Analytic conductor: |
3.67262 |
Root analytic conductor: |
1.38434 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 57600, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1+T2 |
| 5 | C2 | 1+pT2 |
good | 7 | C22 | 1+6T2+p2T4 |
| 11 | C2×C2 | (1−2T+pT2)(1+6T+pT2) |
| 13 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 17 | C22 | 1+2T2+p2T4 |
| 19 | C2×C2 | (1+pT2)(1+8T+pT2) |
| 23 | C22 | 1+2T2+p2T4 |
| 29 | C2 | (1+4T+pT2)2 |
| 31 | C2×C2 | (1+pT2)(1+8T+pT2) |
| 37 | C22 | 1−6T2+p2T4 |
| 41 | C2×C2 | (1−10T+pT2)(1+6T+pT2) |
| 43 | C22 | 1+58T2+p2T4 |
| 47 | C22 | 1−30T2+p2T4 |
| 53 | C22 | 1−22T2+p2T4 |
| 59 | C2×C2 | (1−6T+pT2)(1+2T+pT2) |
| 61 | C2×C2 | (1−10T+pT2)(1+6T+pT2) |
| 67 | C22 | 1−70T2+p2T4 |
| 71 | C2 | (1−12T+pT2)2 |
| 73 | C22 | 1+62T2+p2T4 |
| 79 | C2×C2 | (1−8T+pT2)(1+pT2) |
| 83 | C22 | 1−86T2+p2T4 |
| 89 | C2×C2 | (1−10T+pT2)(1+6T+pT2) |
| 97 | C22 | 1+62T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.611140669062864815271056558566, −9.365889598328798516671123406442, −8.615144406860878781627449204763, −8.214329307238486447538791212556, −7.72000825758485814981796044212, −7.25156720215625820833061588504, −6.49966207063261834816622982659, −6.01230749466635234945297225244, −5.37059153541267463388606524787, −4.97032745406773201180690943389, −3.98573809930382561611866429864, −3.61747823503815992595013485966, −2.46656285877604068153338452679, −1.99173296633949866898224452290, 0,
1.99173296633949866898224452290, 2.46656285877604068153338452679, 3.61747823503815992595013485966, 3.98573809930382561611866429864, 4.97032745406773201180690943389, 5.37059153541267463388606524787, 6.01230749466635234945297225244, 6.49966207063261834816622982659, 7.25156720215625820833061588504, 7.72000825758485814981796044212, 8.214329307238486447538791212556, 8.615144406860878781627449204763, 9.365889598328798516671123406442, 9.611140669062864815271056558566