L(s) = 1 | − 9-s − 4·11-s − 8·19-s − 5·25-s − 8·29-s − 8·31-s + 4·41-s − 6·49-s + 4·59-s + 4·61-s + 24·71-s + 8·79-s + 81-s + 4·89-s + 4·99-s − 8·101-s − 4·109-s + 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯ |
L(s) = 1 | − 1/3·9-s − 1.20·11-s − 1.83·19-s − 25-s − 1.48·29-s − 1.43·31-s + 0.624·41-s − 6/7·49-s + 0.520·59-s + 0.512·61-s + 2.84·71-s + 0.900·79-s + 1/9·81-s + 0.423·89-s + 0.402·99-s − 0.796·101-s − 0.383·109-s + 6/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 57600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 57600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 3 | $C_2$ | \( 1 + T^{2} \) |
| 5 | $C_2$ | \( 1 + p T^{2} \) |
good | 7 | $C_2^2$ | \( 1 + 6 T^{2} + p^{2} T^{4} \) |
| 11 | $C_2$$\times$$C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 13 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 17 | $C_2^2$ | \( 1 + 2 T^{2} + p^{2} T^{4} \) |
| 19 | $C_2$$\times$$C_2$ | \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 23 | $C_2^2$ | \( 1 + 2 T^{2} + p^{2} T^{4} \) |
| 29 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 31 | $C_2$$\times$$C_2$ | \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 37 | $C_2^2$ | \( 1 - 6 T^{2} + p^{2} T^{4} \) |
| 41 | $C_2$$\times$$C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 43 | $C_2^2$ | \( 1 + 58 T^{2} + p^{2} T^{4} \) |
| 47 | $C_2^2$ | \( 1 - 30 T^{2} + p^{2} T^{4} \) |
| 53 | $C_2^2$ | \( 1 - 22 T^{2} + p^{2} T^{4} \) |
| 59 | $C_2$$\times$$C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 61 | $C_2$$\times$$C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 67 | $C_2^2$ | \( 1 - 70 T^{2} + p^{2} T^{4} \) |
| 71 | $C_2$ | \( ( 1 - 12 T + p T^{2} )^{2} \) |
| 73 | $C_2^2$ | \( 1 + 62 T^{2} + p^{2} T^{4} \) |
| 79 | $C_2$$\times$$C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \) |
| 83 | $C_2^2$ | \( 1 - 86 T^{2} + p^{2} T^{4} \) |
| 89 | $C_2$$\times$$C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 97 | $C_2^2$ | \( 1 + 62 T^{2} + p^{2} T^{4} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.611140669062864815271056558566, −9.365889598328798516671123406442, −8.615144406860878781627449204763, −8.214329307238486447538791212556, −7.72000825758485814981796044212, −7.25156720215625820833061588504, −6.49966207063261834816622982659, −6.01230749466635234945297225244, −5.37059153541267463388606524787, −4.97032745406773201180690943389, −3.98573809930382561611866429864, −3.61747823503815992595013485966, −2.46656285877604068153338452679, −1.99173296633949866898224452290, 0,
1.99173296633949866898224452290, 2.46656285877604068153338452679, 3.61747823503815992595013485966, 3.98573809930382561611866429864, 4.97032745406773201180690943389, 5.37059153541267463388606524787, 6.01230749466635234945297225244, 6.49966207063261834816622982659, 7.25156720215625820833061588504, 7.72000825758485814981796044212, 8.214329307238486447538791212556, 8.615144406860878781627449204763, 9.365889598328798516671123406442, 9.611140669062864815271056558566