L(s) = 1 | − 2·2-s + 2·4-s − 4·5-s + 6·7-s − 9-s + 8·10-s + 2·11-s + 8·13-s − 12·14-s − 4·16-s + 6·17-s + 2·18-s − 6·19-s − 8·20-s − 4·22-s − 2·23-s + 11·25-s − 16·26-s + 12·28-s + 6·29-s + 8·32-s − 12·34-s − 24·35-s − 2·36-s + 16·37-s + 12·38-s − 12·43-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 4-s − 1.78·5-s + 2.26·7-s − 1/3·9-s + 2.52·10-s + 0.603·11-s + 2.21·13-s − 3.20·14-s − 16-s + 1.45·17-s + 0.471·18-s − 1.37·19-s − 1.78·20-s − 0.852·22-s − 0.417·23-s + 11/5·25-s − 3.13·26-s + 2.26·28-s + 1.11·29-s + 1.41·32-s − 2.05·34-s − 4.05·35-s − 1/3·36-s + 2.63·37-s + 1.94·38-s − 1.82·43-s + ⋯ |
Λ(s)=(=(57600s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(57600s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
57600
= 28⋅32⋅52
|
Sign: |
1
|
Analytic conductor: |
3.67262 |
Root analytic conductor: |
1.38434 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 57600, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.7393776148 |
L(21) |
≈ |
0.7393776148 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+pT+pT2 |
| 3 | C2 | 1+T2 |
| 5 | C2 | 1+4T+pT2 |
good | 7 | C22 | 1−6T+18T2−6pT3+p2T4 |
| 11 | C22 | 1−2T+2T2−2pT3+p2T4 |
| 13 | C2 | (1−4T+pT2)2 |
| 17 | C2 | (1−8T+pT2)(1+2T+pT2) |
| 19 | C22 | 1+6T+18T2+6pT3+p2T4 |
| 23 | C22 | 1+2T+2T2+2pT3+p2T4 |
| 29 | C2 | (1−10T+pT2)(1+4T+pT2) |
| 31 | C22 | 1+38T2+p2T4 |
| 37 | C2 | (1−8T+pT2)2 |
| 41 | C2 | (1−pT2)2 |
| 43 | C2 | (1+6T+pT2)2 |
| 47 | C22 | 1−10T+50T2−10pT3+p2T4 |
| 53 | C22 | 1−70T2+p2T4 |
| 59 | C22 | 1+14T+98T2+14pT3+p2T4 |
| 61 | C22 | 1+18T+162T2+18pT3+p2T4 |
| 67 | C2 | (1+2T+pT2)2 |
| 71 | C2 | (1+8T+pT2)2 |
| 73 | C2 | (1−6T+pT2)(1+16T+pT2) |
| 79 | C2 | (1+pT2)2 |
| 83 | C22 | 1−150T2+p2T4 |
| 89 | C2 | (1−10T+pT2)2 |
| 97 | C22 | 1+14T+98T2+14pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.96024738045319848409027760090, −11.67709057056776640608665440554, −11.25747202673573245353186410792, −11.05892076509857134572949158698, −10.48926098466320785324298423132, −10.24645145614500882936019503435, −9.022944640304182734043171508817, −8.847102673013975322189811811695, −8.365898651857278957392919164717, −8.106713653208418927705469847711, −7.58987157855732880100126859742, −7.50217387271728220135325116551, −6.23036938681267556806264616869, −6.12505135261452938585231677078, −4.78240645545692724880683043666, −4.46951425297280730473998307454, −3.94419874086849339702377654713, −3.03414532889574315065370727459, −1.59657543727113414694446654062, −1.05186215761897664409518131513,
1.05186215761897664409518131513, 1.59657543727113414694446654062, 3.03414532889574315065370727459, 3.94419874086849339702377654713, 4.46951425297280730473998307454, 4.78240645545692724880683043666, 6.12505135261452938585231677078, 6.23036938681267556806264616869, 7.50217387271728220135325116551, 7.58987157855732880100126859742, 8.106713653208418927705469847711, 8.365898651857278957392919164717, 8.847102673013975322189811811695, 9.022944640304182734043171508817, 10.24645145614500882936019503435, 10.48926098466320785324298423132, 11.05892076509857134572949158698, 11.25747202673573245353186410792, 11.67709057056776640608665440554, 11.96024738045319848409027760090