L(s) = 1 | + 9-s + 8·23-s − 25-s + 8·31-s − 4·41-s + 8·47-s − 10·49-s + 16·71-s − 4·73-s + 8·79-s + 81-s + 12·89-s − 4·97-s + 8·113-s − 2·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 6·169-s + 173-s + 179-s + ⋯ |
L(s) = 1 | + 1/3·9-s + 1.66·23-s − 1/5·25-s + 1.43·31-s − 0.624·41-s + 1.16·47-s − 1.42·49-s + 1.89·71-s − 0.468·73-s + 0.900·79-s + 1/9·81-s + 1.27·89-s − 0.406·97-s + 0.752·113-s − 0.181·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 6/13·169-s + 0.0760·173-s + 0.0747·179-s + ⋯ |
Λ(s)=(=(57600s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(57600s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
57600
= 28⋅32⋅52
|
Sign: |
1
|
Analytic conductor: |
3.67262 |
Root analytic conductor: |
1.38434 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 57600, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.461450132 |
L(21) |
≈ |
1.461450132 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1×C1 | (1−T)(1+T) |
| 5 | C2 | 1+T2 |
good | 7 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 11 | C22 | 1+2T2+p2T4 |
| 13 | C22 | 1−6T2+p2T4 |
| 17 | C2 | (1+pT2)2 |
| 19 | C22 | 1−10T2+p2T4 |
| 23 | C2 | (1−4T+pT2)2 |
| 29 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 31 | C2×C2 | (1−8T+pT2)(1+pT2) |
| 37 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 41 | C2×C2 | (1−6T+pT2)(1+10T+pT2) |
| 43 | C22 | 1+6T2+p2T4 |
| 47 | C2×C2 | (1−8T+pT2)(1+pT2) |
| 53 | C22 | 1−70T2+p2T4 |
| 59 | C22 | 1−30T2+p2T4 |
| 61 | C22 | 1+70T2+p2T4 |
| 67 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 71 | C2×C2 | (1−16T+pT2)(1+pT2) |
| 73 | C2 | (1+2T+pT2)2 |
| 79 | C2×C2 | (1−16T+pT2)(1+8T+pT2) |
| 83 | C22 | 1−26T2+p2T4 |
| 89 | C2×C2 | (1−14T+pT2)(1+2T+pT2) |
| 97 | C2×C2 | (1−14T+pT2)(1+18T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.06325448658857273904204313022, −9.402417311024011038569025377487, −9.076947808228994683297428556955, −8.448702233738562370315415025932, −7.942716130182528340399222636327, −7.44867711041723846797068290753, −6.70244626183064586674998156022, −6.52769857784694909597587762189, −5.68344208303553593197376005547, −5.00465741226719856557315685797, −4.62258139326400856372813398736, −3.76161657111378754289371065947, −3.09464338182030477917379853018, −2.27117761095347414625560142043, −1.09137919815179101298622070951,
1.09137919815179101298622070951, 2.27117761095347414625560142043, 3.09464338182030477917379853018, 3.76161657111378754289371065947, 4.62258139326400856372813398736, 5.00465741226719856557315685797, 5.68344208303553593197376005547, 6.52769857784694909597587762189, 6.70244626183064586674998156022, 7.44867711041723846797068290753, 7.942716130182528340399222636327, 8.448702233738562370315415025932, 9.076947808228994683297428556955, 9.402417311024011038569025377487, 10.06325448658857273904204313022