L(s) = 1 | + 9-s + 8·23-s − 25-s + 8·31-s − 4·41-s + 8·47-s − 10·49-s + 16·71-s − 4·73-s + 8·79-s + 81-s + 12·89-s − 4·97-s + 8·113-s − 2·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 6·169-s + 173-s + 179-s + ⋯ |
L(s) = 1 | + 1/3·9-s + 1.66·23-s − 1/5·25-s + 1.43·31-s − 0.624·41-s + 1.16·47-s − 1.42·49-s + 1.89·71-s − 0.468·73-s + 0.900·79-s + 1/9·81-s + 1.27·89-s − 0.406·97-s + 0.752·113-s − 0.181·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 6/13·169-s + 0.0760·173-s + 0.0747·179-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 57600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 57600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.461450132\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.461450132\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 3 | $C_1$$\times$$C_1$ | \( ( 1 - T )( 1 + T ) \) |
| 5 | $C_2$ | \( 1 + T^{2} \) |
good | 7 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 11 | $C_2^2$ | \( 1 + 2 T^{2} + p^{2} T^{4} \) |
| 13 | $C_2^2$ | \( 1 - 6 T^{2} + p^{2} T^{4} \) |
| 17 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 19 | $C_2^2$ | \( 1 - 10 T^{2} + p^{2} T^{4} \) |
| 23 | $C_2$ | \( ( 1 - 4 T + p T^{2} )^{2} \) |
| 29 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 31 | $C_2$$\times$$C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \) |
| 37 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 41 | $C_2$$\times$$C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 43 | $C_2^2$ | \( 1 + 6 T^{2} + p^{2} T^{4} \) |
| 47 | $C_2$$\times$$C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \) |
| 53 | $C_2^2$ | \( 1 - 70 T^{2} + p^{2} T^{4} \) |
| 59 | $C_2^2$ | \( 1 - 30 T^{2} + p^{2} T^{4} \) |
| 61 | $C_2^2$ | \( 1 + 70 T^{2} + p^{2} T^{4} \) |
| 67 | $C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 71 | $C_2$$\times$$C_2$ | \( ( 1 - 16 T + p T^{2} )( 1 + p T^{2} ) \) |
| 73 | $C_2$ | \( ( 1 + 2 T + p T^{2} )^{2} \) |
| 79 | $C_2$$\times$$C_2$ | \( ( 1 - 16 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 83 | $C_2^2$ | \( 1 - 26 T^{2} + p^{2} T^{4} \) |
| 89 | $C_2$$\times$$C_2$ | \( ( 1 - 14 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 97 | $C_2$$\times$$C_2$ | \( ( 1 - 14 T + p T^{2} )( 1 + 18 T + p T^{2} ) \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.06325448658857273904204313022, −9.402417311024011038569025377487, −9.076947808228994683297428556955, −8.448702233738562370315415025932, −7.942716130182528340399222636327, −7.44867711041723846797068290753, −6.70244626183064586674998156022, −6.52769857784694909597587762189, −5.68344208303553593197376005547, −5.00465741226719856557315685797, −4.62258139326400856372813398736, −3.76161657111378754289371065947, −3.09464338182030477917379853018, −2.27117761095347414625560142043, −1.09137919815179101298622070951,
1.09137919815179101298622070951, 2.27117761095347414625560142043, 3.09464338182030477917379853018, 3.76161657111378754289371065947, 4.62258139326400856372813398736, 5.00465741226719856557315685797, 5.68344208303553593197376005547, 6.52769857784694909597587762189, 6.70244626183064586674998156022, 7.44867711041723846797068290753, 7.942716130182528340399222636327, 8.448702233738562370315415025932, 9.076947808228994683297428556955, 9.402417311024011038569025377487, 10.06325448658857273904204313022