L(s) = 1 | + 2·5-s − 9-s − 25-s + 12·29-s + 12·41-s − 2·45-s + 14·49-s + 4·61-s + 81-s − 12·89-s − 36·101-s + 4·109-s − 6·121-s − 12·125-s + 127-s + 131-s + 137-s + 139-s + 24·145-s + 149-s + 151-s + 157-s + 163-s + 167-s − 22·169-s + 173-s + 179-s + ⋯ |
L(s) = 1 | + 0.894·5-s − 1/3·9-s − 1/5·25-s + 2.22·29-s + 1.87·41-s − 0.298·45-s + 2·49-s + 0.512·61-s + 1/9·81-s − 1.27·89-s − 3.58·101-s + 0.383·109-s − 0.545·121-s − 1.07·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 1.99·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.69·169-s + 0.0760·173-s + 0.0747·179-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 57600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 57600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.625776610\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.625776610\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 3 | $C_2$ | \( 1 + T^{2} \) |
| 5 | $C_2$ | \( 1 - 2 T + p T^{2} \) |
good | 7 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 11 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 13 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 17 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 19 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 23 | $C_2^2$ | \( 1 + 18 T^{2} + p^{2} T^{4} \) |
| 29 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{2} \) |
| 31 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 37 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 41 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{2} \) |
| 43 | $C_2^2$ | \( 1 - 70 T^{2} + p^{2} T^{4} \) |
| 47 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 53 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 59 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 61 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
| 67 | $C_2^2$ | \( 1 - 118 T^{2} + p^{2} T^{4} \) |
| 71 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 73 | $C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 79 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 83 | $C_2^2$ | \( 1 - 150 T^{2} + p^{2} T^{4} \) |
| 89 | $C_2$ | \( ( 1 + 6 T + p T^{2} )^{2} \) |
| 97 | $C_2^2$ | \( 1 - 10 T^{2} + p^{2} T^{4} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.01310549089899510498567713509, −9.516767031653194228293505000223, −8.999222769477543579645116967896, −8.532532851007177915373363419493, −8.009712187101956172091092596951, −7.39696023102605292005128379490, −6.75626336855671302421092609277, −6.27483845369351885835071661051, −5.70601464750226217237219593757, −5.28260549942834099623543513745, −4.45715443970348700585757553785, −3.90964196321524344299090893356, −2.79608921257616715227246506752, −2.40914995981068008590123379595, −1.16055652003619941740790198107,
1.16055652003619941740790198107, 2.40914995981068008590123379595, 2.79608921257616715227246506752, 3.90964196321524344299090893356, 4.45715443970348700585757553785, 5.28260549942834099623543513745, 5.70601464750226217237219593757, 6.27483845369351885835071661051, 6.75626336855671302421092609277, 7.39696023102605292005128379490, 8.009712187101956172091092596951, 8.532532851007177915373363419493, 8.999222769477543579645116967896, 9.516767031653194228293505000223, 10.01310549089899510498567713509