L(s) = 1 | + 2·5-s − 9-s − 25-s + 12·29-s + 12·41-s − 2·45-s + 14·49-s + 4·61-s + 81-s − 12·89-s − 36·101-s + 4·109-s − 6·121-s − 12·125-s + 127-s + 131-s + 137-s + 139-s + 24·145-s + 149-s + 151-s + 157-s + 163-s + 167-s − 22·169-s + 173-s + 179-s + ⋯ |
L(s) = 1 | + 0.894·5-s − 1/3·9-s − 1/5·25-s + 2.22·29-s + 1.87·41-s − 0.298·45-s + 2·49-s + 0.512·61-s + 1/9·81-s − 1.27·89-s − 3.58·101-s + 0.383·109-s − 0.545·121-s − 1.07·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 1.99·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.69·169-s + 0.0760·173-s + 0.0747·179-s + ⋯ |
Λ(s)=(=(57600s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(57600s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
57600
= 28⋅32⋅52
|
Sign: |
1
|
Analytic conductor: |
3.67262 |
Root analytic conductor: |
1.38434 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 57600, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.625776610 |
L(21) |
≈ |
1.625776610 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1+T2 |
| 5 | C2 | 1−2T+pT2 |
good | 7 | C2 | (1−pT2)2 |
| 11 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 13 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 17 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 19 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 23 | C22 | 1+18T2+p2T4 |
| 29 | C2 | (1−6T+pT2)2 |
| 31 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 37 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 41 | C2 | (1−6T+pT2)2 |
| 43 | C22 | 1−70T2+p2T4 |
| 47 | C2 | (1−pT2)2 |
| 53 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 59 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 61 | C2 | (1−2T+pT2)2 |
| 67 | C22 | 1−118T2+p2T4 |
| 71 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 73 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 79 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 83 | C22 | 1−150T2+p2T4 |
| 89 | C2 | (1+6T+pT2)2 |
| 97 | C22 | 1−10T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.01310549089899510498567713509, −9.516767031653194228293505000223, −8.999222769477543579645116967896, −8.532532851007177915373363419493, −8.009712187101956172091092596951, −7.39696023102605292005128379490, −6.75626336855671302421092609277, −6.27483845369351885835071661051, −5.70601464750226217237219593757, −5.28260549942834099623543513745, −4.45715443970348700585757553785, −3.90964196321524344299090893356, −2.79608921257616715227246506752, −2.40914995981068008590123379595, −1.16055652003619941740790198107,
1.16055652003619941740790198107, 2.40914995981068008590123379595, 2.79608921257616715227246506752, 3.90964196321524344299090893356, 4.45715443970348700585757553785, 5.28260549942834099623543513745, 5.70601464750226217237219593757, 6.27483845369351885835071661051, 6.75626336855671302421092609277, 7.39696023102605292005128379490, 8.009712187101956172091092596951, 8.532532851007177915373363419493, 8.999222769477543579645116967896, 9.516767031653194228293505000223, 10.01310549089899510498567713509