L(s) = 1 | + 3-s − 2·4-s + 9-s − 2·12-s − 2·13-s + 19-s − 25-s + 27-s + 3·31-s − 2·36-s − 4·37-s − 2·39-s − 10·43-s − 10·49-s + 4·52-s + 57-s − 2·61-s + 8·64-s + 8·67-s − 8·73-s − 75-s − 2·76-s + 81-s + 3·93-s − 14·97-s + 2·100-s − 2·108-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 4-s + 1/3·9-s − 0.577·12-s − 0.554·13-s + 0.229·19-s − 1/5·25-s + 0.192·27-s + 0.538·31-s − 1/3·36-s − 0.657·37-s − 0.320·39-s − 1.52·43-s − 1.42·49-s + 0.554·52-s + 0.132·57-s − 0.256·61-s + 64-s + 0.977·67-s − 0.936·73-s − 0.115·75-s − 0.229·76-s + 1/9·81-s + 0.311·93-s − 1.42·97-s + 1/5·100-s − 0.192·108-s + ⋯ |
Λ(s)=(=(243675s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(243675s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
243675
= 33⋅52⋅192
|
Sign: |
−1
|
Analytic conductor: |
15.5369 |
Root analytic conductor: |
1.98536 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 243675, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C1 | 1−T |
| 5 | C2 | 1+T2 |
| 19 | C2 | 1−T+pT2 |
good | 2 | C22 | 1+pT2+p2T4 |
| 7 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 11 | C22 | 1−9T2+p2T4 |
| 13 | C2 | (1−4T+pT2)(1+6T+pT2) |
| 17 | C22 | 1−19T2+p2T4 |
| 23 | C22 | 1+14T2+p2T4 |
| 29 | C2 | (1−9T+pT2)(1+9T+pT2) |
| 31 | C2×C2 | (1−3T+pT2)(1+pT2) |
| 37 | C2×C2 | (1−4T+pT2)(1+8T+pT2) |
| 41 | C22 | 1+10T2+p2T4 |
| 43 | C2×C2 | (1+4T+pT2)(1+6T+pT2) |
| 47 | C22 | 1+71T2+p2T4 |
| 53 | C22 | 1+19T2+p2T4 |
| 59 | C22 | 1+61T2+p2T4 |
| 61 | C2×C2 | (1−11T+pT2)(1+13T+pT2) |
| 67 | C2×C2 | (1−6T+pT2)(1−2T+pT2) |
| 71 | C22 | 1+T2+p2T4 |
| 73 | C2×C2 | (1−8T+pT2)(1+16T+pT2) |
| 79 | C2 | (1−T+pT2)(1+T+pT2) |
| 83 | C22 | 1−93T2+p2T4 |
| 89 | C2 | (1−9T+pT2)(1+9T+pT2) |
| 97 | C2×C2 | (1−4T+pT2)(1+18T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.633630525341493583638457503551, −8.395166941405474152027575516190, −7.914872422762183229290916967524, −7.41631768031240655787744141966, −6.80636502565617265499840869515, −6.47968958834526934246222304501, −5.69811719282712620007338569642, −5.05937629246028149837748720062, −4.81066540146337213509272971625, −4.17297521159942847561581740747, −3.61387392376109778270454534270, −3.01848660130097057822476697468, −2.27584932677099814084676102753, −1.39228421435216690840591183904, 0,
1.39228421435216690840591183904, 2.27584932677099814084676102753, 3.01848660130097057822476697468, 3.61387392376109778270454534270, 4.17297521159942847561581740747, 4.81066540146337213509272971625, 5.05937629246028149837748720062, 5.69811719282712620007338569642, 6.47968958834526934246222304501, 6.80636502565617265499840869515, 7.41631768031240655787744141966, 7.914872422762183229290916967524, 8.395166941405474152027575516190, 8.633630525341493583638457503551