L(s) = 1 | + 2·3-s − 12·7-s − 5·9-s + 20·13-s + 4·19-s − 24·21-s + 18·25-s − 28·27-s − 44·31-s − 12·37-s + 40·39-s + 164·43-s + 10·49-s + 8·57-s − 172·61-s + 60·63-s + 4·67-s + 164·73-s + 36·75-s + 20·79-s − 11·81-s − 240·91-s − 88·93-s − 188·97-s − 268·103-s + 20·109-s − 24·111-s + ⋯ |
L(s) = 1 | + 2/3·3-s − 1.71·7-s − 5/9·9-s + 1.53·13-s + 4/19·19-s − 8/7·21-s + 0.719·25-s − 1.03·27-s − 1.41·31-s − 0.324·37-s + 1.02·39-s + 3.81·43-s + 0.204·49-s + 8/57·57-s − 2.81·61-s + 0.952·63-s + 4/67·67-s + 2.24·73-s + 0.479·75-s + 0.253·79-s − 0.135·81-s − 2.63·91-s − 0.946·93-s − 1.93·97-s − 2.60·103-s + 0.183·109-s − 0.216·111-s + ⋯ |
Λ(s)=(=(576s/2ΓC(s)2L(s)Λ(3−s)
Λ(s)=(=(576s/2ΓC(s+1)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
576
= 26⋅32
|
Sign: |
1
|
Analytic conductor: |
0.427654 |
Root analytic conductor: |
0.808673 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 576, ( :1,1), 1)
|
Particular Values
L(23) |
≈ |
0.8882750702 |
L(21) |
≈ |
0.8882750702 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1−2T+p2T2 |
good | 5 | C22 | 1−18T2+p4T4 |
| 7 | C2 | (1+6T+p2T2)2 |
| 11 | C22 | 1−210T2+p4T4 |
| 13 | C2 | (1−10T+p2T2)2 |
| 17 | C22 | 1−66T2+p4T4 |
| 19 | C2 | (1−2T+p2T2)2 |
| 23 | C22 | 1−930T2+p4T4 |
| 29 | C22 | 1−1394T2+p4T4 |
| 31 | C2 | (1+22T+p2T2)2 |
| 37 | C2 | (1+6T+p2T2)2 |
| 41 | C22 | 1−2210T2+p4T4 |
| 43 | C2 | (1−82T+p2T2)2 |
| 47 | C22 | 1+190T2+p4T4 |
| 53 | C22 | 1−1746T2+p4T4 |
| 59 | C22 | 1−1554T2+p4T4 |
| 61 | C2 | (1+86T+p2T2)2 |
| 67 | C2 | (1−2T+p2T2)2 |
| 71 | C22 | 1+5406T2+p4T4 |
| 73 | C2 | (1−82T+p2T2)2 |
| 79 | C2 | (1−10T+p2T2)2 |
| 83 | C22 | 1−8370T2+p4T4 |
| 89 | C22 | 1−14690T2+p4T4 |
| 97 | C2 | (1+94T+p2T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−17.93329962250395857674990055759, −17.14668355749950927793260670781, −16.28425281770056576603944690490, −16.16509422432547218507615041236, −15.41817941221427843923117773211, −14.73168390092593549178382905593, −13.77100009717908332975017242392, −13.70006705163429983926489973324, −12.61782911242619031988447152576, −12.46828269382948081457220826153, −10.99342490422542368991926475278, −10.84205192665977700251879871973, −9.396373175556693518577016958289, −9.311841927145405240809802494724, −8.396629698352459685727855168211, −7.40713148646346123493409827011, −6.36573606719747848689709829916, −5.72798389202971793650888671793, −3.84755496424067939340094305126, −2.98246483718788002904300333538,
2.98246483718788002904300333538, 3.84755496424067939340094305126, 5.72798389202971793650888671793, 6.36573606719747848689709829916, 7.40713148646346123493409827011, 8.396629698352459685727855168211, 9.311841927145405240809802494724, 9.396373175556693518577016958289, 10.84205192665977700251879871973, 10.99342490422542368991926475278, 12.46828269382948081457220826153, 12.61782911242619031988447152576, 13.70006705163429983926489973324, 13.77100009717908332975017242392, 14.73168390092593549178382905593, 15.41817941221427843923117773211, 16.16509422432547218507615041236, 16.28425281770056576603944690490, 17.14668355749950927793260670781, 17.93329962250395857674990055759