L(s) = 1 | + 2·3-s − 4-s + 2·7-s + 3·9-s − 2·12-s + 16-s − 2·17-s + 6·19-s + 4·21-s + 16·23-s + 4·27-s − 2·28-s − 3·36-s + 6·37-s + 2·48-s − 11·49-s − 4·51-s + 12·57-s + 16·59-s + 6·63-s − 64-s + 2·68-s + 32·69-s + 8·73-s − 6·76-s + 5·81-s − 4·84-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 1/2·4-s + 0.755·7-s + 9-s − 0.577·12-s + 1/4·16-s − 0.485·17-s + 1.37·19-s + 0.872·21-s + 3.33·23-s + 0.769·27-s − 0.377·28-s − 1/2·36-s + 0.986·37-s + 0.288·48-s − 1.57·49-s − 0.560·51-s + 1.58·57-s + 2.08·59-s + 0.755·63-s − 1/8·64-s + 0.242·68-s + 3.85·69-s + 0.936·73-s − 0.688·76-s + 5/9·81-s − 0.436·84-s + ⋯ |
Λ(s)=(=(6502500s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(6502500s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
6502500
= 22⋅32⋅54⋅172
|
Sign: |
1
|
Analytic conductor: |
414.605 |
Root analytic conductor: |
4.51241 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 6502500, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
5.392710757 |
L(21) |
≈ |
5.392710757 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T2 |
| 3 | C1 | (1−T)2 |
| 5 | | 1 |
| 17 | C2 | 1+2T+pT2 |
good | 7 | C2 | (1−T+pT2)2 |
| 11 | C22 | 1−13T2+p2T4 |
| 13 | C22 | 1−22T2+p2T4 |
| 19 | C2 | (1−3T+pT2)2 |
| 23 | C2 | (1−8T+pT2)2 |
| 29 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 31 | C22 | 1−61T2+p2T4 |
| 37 | C2 | (1−3T+pT2)2 |
| 41 | C22 | 1−78T2+p2T4 |
| 43 | C22 | 1−5T2+p2T4 |
| 47 | C22 | 1+75T2+p2T4 |
| 53 | C22 | 1+63T2+p2T4 |
| 59 | C2 | (1−8T+pT2)2 |
| 61 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 67 | C22 | 1−125T2+p2T4 |
| 71 | C22 | 1−106T2+p2T4 |
| 73 | C2 | (1−4T+pT2)2 |
| 79 | C22 | 1+11T2+p2T4 |
| 83 | C22 | 1−130T2+p2T4 |
| 89 | C2 | (1−6T+pT2)2 |
| 97 | C2 | (1−12T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.953437266547120230324070130189, −8.775038061632553088223337416682, −8.417509340731736207069433502406, −8.012896242087041538564959686228, −7.54880436723633880549307497293, −7.37034497738504992623997348425, −6.88917404654469952423559197959, −6.62221251103740744320377410909, −5.93949519215987153309427941768, −5.46151443502371642760214485258, −4.92105947126811246238590867589, −4.77784645658636268850378098354, −4.49267728916769438680480260447, −3.67583275624564914238352384063, −3.26642484880613977787182075083, −3.15008615969782863125410887926, −2.37226175374957258653872878470, −2.00348976563689881533517063952, −1.04396355304095248302138119646, −0.936087930532685525070541061256,
0.936087930532685525070541061256, 1.04396355304095248302138119646, 2.00348976563689881533517063952, 2.37226175374957258653872878470, 3.15008615969782863125410887926, 3.26642484880613977787182075083, 3.67583275624564914238352384063, 4.49267728916769438680480260447, 4.77784645658636268850378098354, 4.92105947126811246238590867589, 5.46151443502371642760214485258, 5.93949519215987153309427941768, 6.62221251103740744320377410909, 6.88917404654469952423559197959, 7.37034497738504992623997348425, 7.54880436723633880549307497293, 8.012896242087041538564959686228, 8.417509340731736207069433502406, 8.775038061632553088223337416682, 8.953437266547120230324070130189