L(s) = 1 | + 2·2-s + 2·3-s + 3·4-s + 4·6-s + 4·8-s + 3·9-s + 6·12-s − 4·13-s + 5·16-s + 2·17-s + 6·18-s + 8·19-s + 8·23-s + 8·24-s − 8·26-s + 4·27-s + 12·29-s + 8·31-s + 6·32-s + 4·34-s + 9·36-s − 12·37-s + 16·38-s − 8·39-s + 4·41-s − 8·43-s + 16·46-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 1.15·3-s + 3/2·4-s + 1.63·6-s + 1.41·8-s + 9-s + 1.73·12-s − 1.10·13-s + 5/4·16-s + 0.485·17-s + 1.41·18-s + 1.83·19-s + 1.66·23-s + 1.63·24-s − 1.56·26-s + 0.769·27-s + 2.22·29-s + 1.43·31-s + 1.06·32-s + 0.685·34-s + 3/2·36-s − 1.97·37-s + 2.59·38-s − 1.28·39-s + 0.624·41-s − 1.21·43-s + 2.35·46-s + ⋯ |
Λ(s)=(=(6502500s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(6502500s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
6502500
= 22⋅32⋅54⋅172
|
Sign: |
1
|
Analytic conductor: |
414.605 |
Root analytic conductor: |
4.51241 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 6502500, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
13.57530258 |
L(21) |
≈ |
13.57530258 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1−T)2 |
| 3 | C1 | (1−T)2 |
| 5 | | 1 |
| 17 | C1 | (1−T)2 |
good | 7 | C22 | 1−10T2+p2T4 |
| 11 | C2 | (1+pT2)2 |
| 13 | D4 | 1+4T+6T2+4pT3+p2T4 |
| 19 | C2 | (1−4T+pT2)2 |
| 23 | C2 | (1−4T+pT2)2 |
| 29 | C2 | (1−6T+pT2)2 |
| 31 | C2 | (1−4T+pT2)2 |
| 37 | C2 | (1+6T+pT2)2 |
| 41 | D4 | 1−4T+62T2−4pT3+p2T4 |
| 43 | D4 | 1+8T+78T2+8pT3+p2T4 |
| 47 | C22 | 1−2T2+p2T4 |
| 53 | D4 | 1+4T+14T2+4pT3+p2T4 |
| 59 | C22 | 1+94T2+p2T4 |
| 61 | D4 | 1−4T+30T2−4pT3+p2T4 |
| 67 | D4 | 1−8T+126T2−8pT3+p2T4 |
| 71 | D4 | 1+8T+134T2+8pT3+p2T4 |
| 73 | D4 | 1−12T+158T2−12pT3+p2T4 |
| 79 | D4 | 1−8T+78T2−8pT3+p2T4 |
| 83 | D4 | 1+8T+86T2+8pT3+p2T4 |
| 89 | D4 | 1−4T+86T2−4pT3+p2T4 |
| 97 | D4 | 1+4T−18T2+4pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.082550147459862918676075951706, −8.606682605643484209080879198283, −8.127916647169046251029335368726, −8.062299306457441686802596270243, −7.31325713442745415679473846396, −7.18828732564724250752809734899, −6.84895881498179847375877778963, −6.50667932303110474761670697883, −5.94152664604761259414837900025, −5.21802591240586651643094799364, −5.09674292455891256716034926920, −4.90474911446282460543269684986, −4.28826888197865574242287274394, −3.81978772612130592958545511318, −3.22895280552767533646838242355, −3.08535406564464226280358519328, −2.60829502822413148291791873420, −2.28706944761092575345808084901, −1.31410150339493194386988013659, −1.01371369103375821978881681616,
1.01371369103375821978881681616, 1.31410150339493194386988013659, 2.28706944761092575345808084901, 2.60829502822413148291791873420, 3.08535406564464226280358519328, 3.22895280552767533646838242355, 3.81978772612130592958545511318, 4.28826888197865574242287274394, 4.90474911446282460543269684986, 5.09674292455891256716034926920, 5.21802591240586651643094799364, 5.94152664604761259414837900025, 6.50667932303110474761670697883, 6.84895881498179847375877778963, 7.18828732564724250752809734899, 7.31325713442745415679473846396, 8.062299306457441686802596270243, 8.127916647169046251029335368726, 8.606682605643484209080879198283, 9.082550147459862918676075951706