L(s) = 1 | − 2-s + 4-s + 4·5-s − 8-s − 4·10-s + 16-s − 2·19-s + 4·20-s − 2·23-s + 11·25-s + 4·29-s − 32-s + 2·38-s − 4·40-s + 4·43-s + 2·46-s + 12·47-s + 4·49-s − 11·50-s + 16·53-s − 4·58-s + 64-s − 10·67-s − 2·71-s − 4·73-s − 2·76-s + 4·80-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s + 1.78·5-s − 0.353·8-s − 1.26·10-s + 1/4·16-s − 0.458·19-s + 0.894·20-s − 0.417·23-s + 11/5·25-s + 0.742·29-s − 0.176·32-s + 0.324·38-s − 0.632·40-s + 0.609·43-s + 0.294·46-s + 1.75·47-s + 4/7·49-s − 1.55·50-s + 2.19·53-s − 0.525·58-s + 1/8·64-s − 1.22·67-s − 0.237·71-s − 0.468·73-s − 0.229·76-s + 0.447·80-s + ⋯ |
Λ(s)=(=(259200s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(259200s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
259200
= 27⋅34⋅52
|
Sign: |
1
|
Analytic conductor: |
16.5268 |
Root analytic conductor: |
2.01626 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 259200, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.842117682 |
L(21) |
≈ |
1.842117682 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | 1+T |
| 3 | | 1 |
| 5 | C2 | 1−4T+pT2 |
good | 7 | C22 | 1−4T2+p2T4 |
| 11 | C22 | 1−20T2+p2T4 |
| 13 | C22 | 1−2T2+p2T4 |
| 17 | C22 | 1+2T2+p2T4 |
| 19 | C2×C2 | (1−4T+pT2)(1+6T+pT2) |
| 23 | C2×C2 | (1−4T+pT2)(1+6T+pT2) |
| 29 | C2×C2 | (1−6T+pT2)(1+2T+pT2) |
| 31 | C22 | 1−18T2+p2T4 |
| 37 | C22 | 1+34T2+p2T4 |
| 41 | C22 | 1+34T2+p2T4 |
| 43 | C2×C2 | (1−8T+pT2)(1+4T+pT2) |
| 47 | C2×C2 | (1−8T+pT2)(1−4T+pT2) |
| 53 | C2×C2 | (1−10T+pT2)(1−6T+pT2) |
| 59 | C22 | 1+4T2+p2T4 |
| 61 | C22 | 1−38T2+p2T4 |
| 67 | C2×C2 | (1+pT2)(1+10T+pT2) |
| 71 | C2×C2 | (1−6T+pT2)(1+8T+pT2) |
| 73 | C2×C2 | (1−2T+pT2)(1+6T+pT2) |
| 79 | C22 | 1−142T2+p2T4 |
| 83 | C22 | 1+6T2+p2T4 |
| 89 | C22 | 1−74T2+p2T4 |
| 97 | C2×C2 | (1−2T+pT2)(1+12T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.081444259937376947085319925841, −8.523285408969769437469971320630, −8.228116244396256443869053669012, −7.34470332136653973429739824837, −7.11957178074071411009733756910, −6.54351622473128791008628510863, −5.94692085854568052038423647429, −5.77270774455158360582234041973, −5.22074566980770104380699023481, −4.46117196245196832818359739611, −3.88296031384893801501633766656, −2.81751947676589648650979183563, −2.48071790774233938628729689497, −1.79620548558312040514035893609, −0.961937939221127316723838522284,
0.961937939221127316723838522284, 1.79620548558312040514035893609, 2.48071790774233938628729689497, 2.81751947676589648650979183563, 3.88296031384893801501633766656, 4.46117196245196832818359739611, 5.22074566980770104380699023481, 5.77270774455158360582234041973, 5.94692085854568052038423647429, 6.54351622473128791008628510863, 7.11957178074071411009733756910, 7.34470332136653973429739824837, 8.228116244396256443869053669012, 8.523285408969769437469971320630, 9.081444259937376947085319925841