L(s) = 1 | − 2-s + 4-s − 3·5-s − 8-s + 3·10-s + 16-s + 19-s − 3·20-s − 3·23-s + 4·25-s − 3·29-s − 32-s − 38-s + 3·40-s + 19·43-s + 3·46-s − 12·47-s − 10·49-s − 4·50-s + 15·53-s + 3·58-s + 64-s − 17·67-s + 15·71-s + 4·73-s + 76-s − 3·80-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s − 1.34·5-s − 0.353·8-s + 0.948·10-s + 1/4·16-s + 0.229·19-s − 0.670·20-s − 0.625·23-s + 4/5·25-s − 0.557·29-s − 0.176·32-s − 0.162·38-s + 0.474·40-s + 2.89·43-s + 0.442·46-s − 1.75·47-s − 1.42·49-s − 0.565·50-s + 2.06·53-s + 0.393·58-s + 1/8·64-s − 2.07·67-s + 1.78·71-s + 0.468·73-s + 0.114·76-s − 0.335·80-s + ⋯ |
Λ(s)=(=(259200s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(259200s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
259200
= 27⋅34⋅52
|
Sign: |
−1
|
Analytic conductor: |
16.5268 |
Root analytic conductor: |
2.01626 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 259200, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | 1+T |
| 3 | | 1 |
| 5 | C2 | 1+3T+pT2 |
good | 7 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 11 | C22 | 1+T2+p2T4 |
| 13 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 17 | C22 | 1+4T2+p2T4 |
| 19 | C2×C2 | (1−2T+pT2)(1+T+pT2) |
| 23 | C2×C2 | (1+pT2)(1+3T+pT2) |
| 29 | C2×C2 | (1−3T+pT2)(1+6T+pT2) |
| 31 | C22 | 1+4T2+p2T4 |
| 37 | C22 | 1+7T2+p2T4 |
| 41 | C22 | 1−80T2+p2T4 |
| 43 | C2×C2 | (1−11T+pT2)(1−8T+pT2) |
| 47 | C2×C2 | (1+3T+pT2)(1+9T+pT2) |
| 53 | C2×C2 | (1−9T+pT2)(1−6T+pT2) |
| 59 | C22 | 1−89T2+p2T4 |
| 61 | C22 | 1+19T2+p2T4 |
| 67 | C2×C2 | (1+4T+pT2)(1+13T+pT2) |
| 71 | C2×C2 | (1−12T+pT2)(1−3T+pT2) |
| 73 | C2×C2 | (1−5T+pT2)(1+T+pT2) |
| 79 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 83 | C22 | 1+34T2+p2T4 |
| 89 | C22 | 1+82T2+p2T4 |
| 97 | C2×C2 | (1−14T+pT2)(1+10T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.592024887147004238522478109400, −8.191195454658669617417835931001, −7.81293625892389359448959552865, −7.32063813036665890781783507491, −7.12734422063696952927030048463, −6.29167561017585931333796614613, −5.99135520826587030680866696404, −5.23616651406848519937671396223, −4.67460018755356754408633544587, −3.95085073190493848317073200703, −3.67797931095645385521420582580, −2.87648326950427116269956643477, −2.18190094213517380836854554891, −1.12540824385951466905642356085, 0,
1.12540824385951466905642356085, 2.18190094213517380836854554891, 2.87648326950427116269956643477, 3.67797931095645385521420582580, 3.95085073190493848317073200703, 4.67460018755356754408633544587, 5.23616651406848519937671396223, 5.99135520826587030680866696404, 6.29167561017585931333796614613, 7.12734422063696952927030048463, 7.32063813036665890781783507491, 7.81293625892389359448959552865, 8.191195454658669617417835931001, 8.592024887147004238522478109400