Properties

Label 4-259200-1.1-c1e2-0-40
Degree $4$
Conductor $259200$
Sign $-1$
Analytic cond. $16.5268$
Root an. cond. $2.01626$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 3·5-s − 8-s + 3·10-s + 16-s + 19-s − 3·20-s − 3·23-s + 4·25-s − 3·29-s − 32-s − 38-s + 3·40-s + 19·43-s + 3·46-s − 12·47-s − 10·49-s − 4·50-s + 15·53-s + 3·58-s + 64-s − 17·67-s + 15·71-s + 4·73-s + 76-s − 3·80-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 1.34·5-s − 0.353·8-s + 0.948·10-s + 1/4·16-s + 0.229·19-s − 0.670·20-s − 0.625·23-s + 4/5·25-s − 0.557·29-s − 0.176·32-s − 0.162·38-s + 0.474·40-s + 2.89·43-s + 0.442·46-s − 1.75·47-s − 1.42·49-s − 0.565·50-s + 2.06·53-s + 0.393·58-s + 1/8·64-s − 2.07·67-s + 1.78·71-s + 0.468·73-s + 0.114·76-s − 0.335·80-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 259200 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 259200 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(259200\)    =    \(2^{7} \cdot 3^{4} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(16.5268\)
Root analytic conductor: \(2.01626\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 259200,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
3 \( 1 \)
5$C_2$ \( 1 + 3 T + p T^{2} \)
good7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
19$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + T + p T^{2} ) \)
23$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 3 T + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 7 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 - 80 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 - 8 T + p T^{2} ) \)
47$C_2$$\times$$C_2$ \( ( 1 + 3 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 89 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 19 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 3 T + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 82 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.592024887147004238522478109400, −8.191195454658669617417835931001, −7.81293625892389359448959552865, −7.32063813036665890781783507491, −7.12734422063696952927030048463, −6.29167561017585931333796614613, −5.99135520826587030680866696404, −5.23616651406848519937671396223, −4.67460018755356754408633544587, −3.95085073190493848317073200703, −3.67797931095645385521420582580, −2.87648326950427116269956643477, −2.18190094213517380836854554891, −1.12540824385951466905642356085, 0, 1.12540824385951466905642356085, 2.18190094213517380836854554891, 2.87648326950427116269956643477, 3.67797931095645385521420582580, 3.95085073190493848317073200703, 4.67460018755356754408633544587, 5.23616651406848519937671396223, 5.99135520826587030680866696404, 6.29167561017585931333796614613, 7.12734422063696952927030048463, 7.32063813036665890781783507491, 7.81293625892389359448959552865, 8.191195454658669617417835931001, 8.592024887147004238522478109400

Graph of the $Z$-function along the critical line