L(s) = 1 | − 2-s + 4-s − 3·5-s − 8-s + 3·10-s + 16-s + 5·19-s − 3·20-s + 3·23-s + 4·25-s − 9·29-s − 32-s − 5·38-s + 3·40-s − 9·43-s − 3·46-s − 15·47-s + 4·49-s − 4·50-s + 18·53-s + 9·58-s + 64-s + 18·67-s − 9·71-s − 27·73-s + 5·76-s − 3·80-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s − 1.34·5-s − 0.353·8-s + 0.948·10-s + 1/4·16-s + 1.14·19-s − 0.670·20-s + 0.625·23-s + 4/5·25-s − 1.67·29-s − 0.176·32-s − 0.811·38-s + 0.474·40-s − 1.37·43-s − 0.442·46-s − 2.18·47-s + 4/7·49-s − 0.565·50-s + 2.47·53-s + 1.18·58-s + 1/8·64-s + 2.19·67-s − 1.06·71-s − 3.16·73-s + 0.573·76-s − 0.335·80-s + ⋯ |
Λ(s)=(=(259200s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(259200s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
259200
= 27⋅34⋅52
|
Sign: |
−1
|
Analytic conductor: |
16.5268 |
Root analytic conductor: |
2.01626 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 259200, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | 1+T |
| 3 | | 1 |
| 5 | C2 | 1+3T+pT2 |
good | 7 | C22 | 1−4T2+p2T4 |
| 11 | C22 | 1−4T2+p2T4 |
| 13 | C22 | 1−19T2+p2T4 |
| 17 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 19 | C2×C2 | (1−7T+pT2)(1+2T+pT2) |
| 23 | C2×C2 | (1−6T+pT2)(1+3T+pT2) |
| 29 | C2×C2 | (1+3T+pT2)(1+6T+pT2) |
| 31 | C22 | 1−17T2+p2T4 |
| 37 | C2 | (1+pT2)2 |
| 41 | C22 | 1−T2+p2T4 |
| 43 | C2×C2 | (1+T+pT2)(1+8T+pT2) |
| 47 | C2×C2 | (1+3T+pT2)(1+12T+pT2) |
| 53 | C2 | (1−9T+pT2)2 |
| 59 | C22 | 1+80T2+p2T4 |
| 61 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 67 | C2×C2 | (1−14T+pT2)(1−4T+pT2) |
| 71 | C2×C2 | (1+pT2)(1+9T+pT2) |
| 73 | C2×C2 | (1+11T+pT2)(1+16T+pT2) |
| 79 | C22 | 1+103T2+p2T4 |
| 83 | C22 | 1−113T2+p2T4 |
| 89 | C22 | 1−43T2+p2T4 |
| 97 | C2×C2 | (1+T+pT2)(1+8T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.697195746157920782875702812837, −8.255504638981699164869591310184, −7.70968573373049697344916592480, −7.34107847737531780917400384171, −7.07166907084479305676430039793, −6.51718624391523389418725774430, −5.71974941571566655766109684626, −5.34729709925935676627870313075, −4.69327716580066576617467360574, −4.02815771306921680916527359686, −3.44958169279328725318537128187, −3.07375791172403503107853326193, −2.09245008436728335076150952409, −1.15529697078920214006424913776, 0,
1.15529697078920214006424913776, 2.09245008436728335076150952409, 3.07375791172403503107853326193, 3.44958169279328725318537128187, 4.02815771306921680916527359686, 4.69327716580066576617467360574, 5.34729709925935676627870313075, 5.71974941571566655766109684626, 6.51718624391523389418725774430, 7.07166907084479305676430039793, 7.34107847737531780917400384171, 7.70968573373049697344916592480, 8.255504638981699164869591310184, 8.697195746157920782875702812837