Properties

Label 4-259200-1.1-c1e2-0-41
Degree $4$
Conductor $259200$
Sign $-1$
Analytic cond. $16.5268$
Root an. cond. $2.01626$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 3·5-s − 8-s + 3·10-s + 16-s + 5·19-s − 3·20-s + 3·23-s + 4·25-s − 9·29-s − 32-s − 5·38-s + 3·40-s − 9·43-s − 3·46-s − 15·47-s + 4·49-s − 4·50-s + 18·53-s + 9·58-s + 64-s + 18·67-s − 9·71-s − 27·73-s + 5·76-s − 3·80-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 1.34·5-s − 0.353·8-s + 0.948·10-s + 1/4·16-s + 1.14·19-s − 0.670·20-s + 0.625·23-s + 4/5·25-s − 1.67·29-s − 0.176·32-s − 0.811·38-s + 0.474·40-s − 1.37·43-s − 0.442·46-s − 2.18·47-s + 4/7·49-s − 0.565·50-s + 2.47·53-s + 1.18·58-s + 1/8·64-s + 2.19·67-s − 1.06·71-s − 3.16·73-s + 0.573·76-s − 0.335·80-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 259200 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 259200 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(259200\)    =    \(2^{7} \cdot 3^{4} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(16.5268\)
Root analytic conductor: \(2.01626\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 259200,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
3 \( 1 \)
5$C_2$ \( 1 + 3 T + p T^{2} \)
good7$C_2^2$ \( 1 - 4 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 4 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 19 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
23$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 + 3 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 17 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 + p T^{2} )^{2} \)
41$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2$$\times$$C_2$ \( ( 1 + 3 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 + 80 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 9 T + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 + 11 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
79$C_2^2$ \( 1 + 103 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 - 113 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 43 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.697195746157920782875702812837, −8.255504638981699164869591310184, −7.70968573373049697344916592480, −7.34107847737531780917400384171, −7.07166907084479305676430039793, −6.51718624391523389418725774430, −5.71974941571566655766109684626, −5.34729709925935676627870313075, −4.69327716580066576617467360574, −4.02815771306921680916527359686, −3.44958169279328725318537128187, −3.07375791172403503107853326193, −2.09245008436728335076150952409, −1.15529697078920214006424913776, 0, 1.15529697078920214006424913776, 2.09245008436728335076150952409, 3.07375791172403503107853326193, 3.44958169279328725318537128187, 4.02815771306921680916527359686, 4.69327716580066576617467360574, 5.34729709925935676627870313075, 5.71974941571566655766109684626, 6.51718624391523389418725774430, 7.07166907084479305676430039793, 7.34107847737531780917400384171, 7.70968573373049697344916592480, 8.255504638981699164869591310184, 8.697195746157920782875702812837

Graph of the $Z$-function along the critical line