L(s) = 1 | − 4·13-s + 8·23-s − 25-s + 4·37-s − 8·47-s + 6·49-s + 4·61-s + 16·71-s − 4·73-s + 16·83-s − 4·97-s + 16·107-s − 4·109-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2·169-s + 173-s + 179-s + 181-s + ⋯ |
L(s) = 1 | − 1.10·13-s + 1.66·23-s − 1/5·25-s + 0.657·37-s − 1.16·47-s + 6/7·49-s + 0.512·61-s + 1.89·71-s − 0.468·73-s + 1.75·83-s − 0.406·97-s + 1.54·107-s − 0.383·109-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2/13·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯ |
Λ(s)=(=(259200s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(259200s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
259200
= 27⋅34⋅52
|
Sign: |
1
|
Analytic conductor: |
16.5268 |
Root analytic conductor: |
2.01626 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 259200, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.566598933 |
L(21) |
≈ |
1.566598933 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C2 | 1+T2 |
good | 7 | C22 | 1−6T2+p2T4 |
| 11 | C2 | (1+pT2)2 |
| 13 | C2×C2 | (1−2T+pT2)(1+6T+pT2) |
| 17 | C22 | 1−14T2+p2T4 |
| 19 | C22 | 1+6T2+p2T4 |
| 23 | C2×C2 | (1−6T+pT2)(1−2T+pT2) |
| 29 | C22 | 1−22T2+p2T4 |
| 31 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 37 | C2×C2 | (1−6T+pT2)(1+2T+pT2) |
| 41 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 43 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 47 | C2×C2 | (1+2T+pT2)(1+6T+pT2) |
| 53 | C22 | 1−6T2+p2T4 |
| 59 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 61 | C2 | (1−2T+pT2)2 |
| 67 | C22 | 1+2T2+p2T4 |
| 71 | C2×C2 | (1−12T+pT2)(1−4T+pT2) |
| 73 | C2×C2 | (1−6T+pT2)(1+10T+pT2) |
| 79 | C22 | 1−82T2+p2T4 |
| 83 | C2×C2 | (1−14T+pT2)(1−2T+pT2) |
| 89 | C22 | 1+50T2+p2T4 |
| 97 | C2×C2 | (1−6T+pT2)(1+10T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.129296133530559885394075950226, −8.396523644088606422215069847706, −7.967211502850339151955928539718, −7.52839657271779380918414162346, −7.00137644920259989753610340300, −6.65023927439790795985709979733, −6.10280451823324955313981595609, −5.30061725162678769238788205992, −5.12147080240708820645410571852, −4.50651416000898318828262604108, −3.87811169898465142448625710841, −3.15822749708855078037531916407, −2.61762806168029183637732500482, −1.88500540257971488927426795945, −0.76158493647655685835419264301,
0.76158493647655685835419264301, 1.88500540257971488927426795945, 2.61762806168029183637732500482, 3.15822749708855078037531916407, 3.87811169898465142448625710841, 4.50651416000898318828262604108, 5.12147080240708820645410571852, 5.30061725162678769238788205992, 6.10280451823324955313981595609, 6.65023927439790795985709979733, 7.00137644920259989753610340300, 7.52839657271779380918414162346, 7.967211502850339151955928539718, 8.396523644088606422215069847706, 9.129296133530559885394075950226