Properties

Label 4-2695275-1.1-c1e2-0-19
Degree $4$
Conductor $2695275$
Sign $1$
Analytic cond. $171.853$
Root an. cond. $3.62067$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·4-s − 2·5-s + 11-s + 5·16-s − 6·20-s − 25-s + 16·31-s + 3·44-s − 2·49-s − 2·55-s + 8·59-s + 3·64-s − 10·80-s − 12·89-s − 3·100-s + 121-s + 48·124-s + 12·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 32·155-s + 157-s + 163-s + ⋯
L(s)  = 1  + 3/2·4-s − 0.894·5-s + 0.301·11-s + 5/4·16-s − 1.34·20-s − 1/5·25-s + 2.87·31-s + 0.452·44-s − 2/7·49-s − 0.269·55-s + 1.04·59-s + 3/8·64-s − 1.11·80-s − 1.27·89-s − 0.299·100-s + 1/11·121-s + 4.31·124-s + 1.07·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 2.57·155-s + 0.0798·157-s + 0.0783·163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2695275 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2695275 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2695275\)    =    \(3^{4} \cdot 5^{2} \cdot 11^{3}\)
Sign: $1$
Analytic conductor: \(171.853\)
Root analytic conductor: \(3.62067\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 2695275,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.950186345\)
\(L(\frac12)\) \(\approx\) \(2.950186345\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5$C_2$ \( 1 + 2 T + p T^{2} \)
11$C_1$ \( 1 - T \)
good2$C_2^2$ \( 1 - 3 T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2$ \( ( 1 - p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.60290232847304408135830133156, −7.06357245241558270656855619159, −6.86156063367989210039158772723, −6.46286624390891316695752121741, −6.02045916898048232106941994126, −5.70161555368798107683496311288, −4.97199342804118720933760459970, −4.58491876123190085009592262009, −4.04083673948420490884258308720, −3.64920117372470453410488274693, −2.90668071449851211497557084111, −2.76291904484387861999019027273, −2.06493997072077583121716954000, −1.41914140794236273960317365267, −0.67051293034997416873087953327, 0.67051293034997416873087953327, 1.41914140794236273960317365267, 2.06493997072077583121716954000, 2.76291904484387861999019027273, 2.90668071449851211497557084111, 3.64920117372470453410488274693, 4.04083673948420490884258308720, 4.58491876123190085009592262009, 4.97199342804118720933760459970, 5.70161555368798107683496311288, 6.02045916898048232106941994126, 6.46286624390891316695752121741, 6.86156063367989210039158772723, 7.06357245241558270656855619159, 7.60290232847304408135830133156

Graph of the $Z$-function along the critical line