L(s) = 1 | + 3·4-s − 2·5-s + 11-s + 5·16-s − 6·20-s − 25-s + 16·31-s + 3·44-s − 2·49-s − 2·55-s + 8·59-s + 3·64-s − 10·80-s − 12·89-s − 3·100-s + 121-s + 48·124-s + 12·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 32·155-s + 157-s + 163-s + ⋯ |
L(s) = 1 | + 3/2·4-s − 0.894·5-s + 0.301·11-s + 5/4·16-s − 1.34·20-s − 1/5·25-s + 2.87·31-s + 0.452·44-s − 2/7·49-s − 0.269·55-s + 1.04·59-s + 3/8·64-s − 1.11·80-s − 1.27·89-s − 0.299·100-s + 1/11·121-s + 4.31·124-s + 1.07·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 2.57·155-s + 0.0798·157-s + 0.0783·163-s + ⋯ |
Λ(s)=(=(2695275s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(2695275s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
2695275
= 34⋅52⋅113
|
Sign: |
1
|
Analytic conductor: |
171.853 |
Root analytic conductor: |
3.62067 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 2695275, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.950186345 |
L(21) |
≈ |
2.950186345 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 5 | C2 | 1+2T+pT2 |
| 11 | C1 | 1−T |
good | 2 | C22 | 1−3T2+p2T4 |
| 7 | C22 | 1+2T2+p2T4 |
| 13 | C22 | 1−22T2+p2T4 |
| 17 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 19 | C2 | (1+pT2)2 |
| 23 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 29 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 31 | C2 | (1−8T+pT2)2 |
| 37 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 41 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 43 | C2 | (1−pT2)2 |
| 47 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 53 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 59 | C2 | (1−4T+pT2)2 |
| 61 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 67 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 71 | C2 | (1+pT2)2 |
| 73 | C22 | 1+50T2+p2T4 |
| 79 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 83 | C22 | 1−22T2+p2T4 |
| 89 | C2 | (1+6T+pT2)2 |
| 97 | C2 | (1−2T+pT2)(1+2T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.60290232847304408135830133156, −7.06357245241558270656855619159, −6.86156063367989210039158772723, −6.46286624390891316695752121741, −6.02045916898048232106941994126, −5.70161555368798107683496311288, −4.97199342804118720933760459970, −4.58491876123190085009592262009, −4.04083673948420490884258308720, −3.64920117372470453410488274693, −2.90668071449851211497557084111, −2.76291904484387861999019027273, −2.06493997072077583121716954000, −1.41914140794236273960317365267, −0.67051293034997416873087953327,
0.67051293034997416873087953327, 1.41914140794236273960317365267, 2.06493997072077583121716954000, 2.76291904484387861999019027273, 2.90668071449851211497557084111, 3.64920117372470453410488274693, 4.04083673948420490884258308720, 4.58491876123190085009592262009, 4.97199342804118720933760459970, 5.70161555368798107683496311288, 6.02045916898048232106941994126, 6.46286624390891316695752121741, 6.86156063367989210039158772723, 7.06357245241558270656855619159, 7.60290232847304408135830133156