Properties

Label 4-2695275-1.1-c1e2-0-30
Degree $4$
Conductor $2695275$
Sign $-1$
Analytic cond. $171.853$
Root an. cond. $3.62067$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s − 11-s − 3·16-s + 25-s − 14·31-s + 16·37-s + 44-s − 6·47-s − 4·49-s − 6·53-s + 12·59-s + 7·64-s − 2·67-s + 6·71-s − 18·89-s + 4·97-s − 100-s + 16·103-s + 12·113-s + 121-s + 14·124-s + 127-s + 131-s + 137-s + 139-s − 16·148-s + 149-s + ⋯
L(s)  = 1  − 1/2·4-s − 0.301·11-s − 3/4·16-s + 1/5·25-s − 2.51·31-s + 2.63·37-s + 0.150·44-s − 0.875·47-s − 4/7·49-s − 0.824·53-s + 1.56·59-s + 7/8·64-s − 0.244·67-s + 0.712·71-s − 1.90·89-s + 0.406·97-s − 0.0999·100-s + 1.57·103-s + 1.12·113-s + 1/11·121-s + 1.25·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 1.31·148-s + 0.0819·149-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2695275 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2695275 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2695275\)    =    \(3^{4} \cdot 5^{2} \cdot 11^{3}\)
Sign: $-1$
Analytic conductor: \(171.853\)
Root analytic conductor: \(3.62067\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 2695275,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
11$C_1$ \( 1 + T \)
good2$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 28 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 + 16 T^{2} + p^{2} T^{4} \)
47$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + p T^{2} ) \)
61$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \)
73$C_2^2$ \( 1 - 122 T^{2} + p^{2} T^{4} \)
79$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 - 62 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.36828250900503417275095834972, −7.08427307801830795641955571937, −6.56770762327839215421996821253, −6.10544281123673679328718070451, −5.68752923116124310684381104274, −5.28337990826132128961816141009, −4.74340941157951287670358044241, −4.45701172528653151946818565300, −3.91174842651292112836066981197, −3.44997528715722504141228418169, −2.89616505606515762031794926470, −2.25423524075303761594945182227, −1.80090193517497396536391751852, −0.870024250421061824697470711606, 0, 0.870024250421061824697470711606, 1.80090193517497396536391751852, 2.25423524075303761594945182227, 2.89616505606515762031794926470, 3.44997528715722504141228418169, 3.91174842651292112836066981197, 4.45701172528653151946818565300, 4.74340941157951287670358044241, 5.28337990826132128961816141009, 5.68752923116124310684381104274, 6.10544281123673679328718070451, 6.56770762327839215421996821253, 7.08427307801830795641955571937, 7.36828250900503417275095834972

Graph of the $Z$-function along the critical line