L(s) = 1 | − 4-s − 11-s − 3·16-s + 25-s − 14·31-s + 16·37-s + 44-s − 6·47-s − 4·49-s − 6·53-s + 12·59-s + 7·64-s − 2·67-s + 6·71-s − 18·89-s + 4·97-s − 100-s + 16·103-s + 12·113-s + 121-s + 14·124-s + 127-s + 131-s + 137-s + 139-s − 16·148-s + 149-s + ⋯ |
L(s) = 1 | − 1/2·4-s − 0.301·11-s − 3/4·16-s + 1/5·25-s − 2.51·31-s + 2.63·37-s + 0.150·44-s − 0.875·47-s − 4/7·49-s − 0.824·53-s + 1.56·59-s + 7/8·64-s − 0.244·67-s + 0.712·71-s − 1.90·89-s + 0.406·97-s − 0.0999·100-s + 1.57·103-s + 1.12·113-s + 1/11·121-s + 1.25·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 1.31·148-s + 0.0819·149-s + ⋯ |
Λ(s)=(=(2695275s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(2695275s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
2695275
= 34⋅52⋅113
|
Sign: |
−1
|
Analytic conductor: |
171.853 |
Root analytic conductor: |
3.62067 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 2695275, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 5 | C1×C1 | (1−T)(1+T) |
| 11 | C1 | 1+T |
good | 2 | C22 | 1+T2+p2T4 |
| 7 | C22 | 1+4T2+p2T4 |
| 13 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 17 | C22 | 1−14T2+p2T4 |
| 19 | C22 | 1+28T2+p2T4 |
| 23 | C2 | (1+pT2)2 |
| 29 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 31 | C2×C2 | (1+4T+pT2)(1+10T+pT2) |
| 37 | C2 | (1−8T+pT2)2 |
| 41 | C22 | 1−2T2+p2T4 |
| 43 | C22 | 1+16T2+p2T4 |
| 47 | C2×C2 | (1−6T+pT2)(1+12T+pT2) |
| 53 | C2×C2 | (1+pT2)(1+6T+pT2) |
| 59 | C2×C2 | (1−12T+pT2)(1+pT2) |
| 61 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 67 | C2×C2 | (1−2T+pT2)(1+4T+pT2) |
| 71 | C2×C2 | (1−6T+pT2)(1+pT2) |
| 73 | C22 | 1−122T2+p2T4 |
| 79 | C22 | 1−8T2+p2T4 |
| 83 | C22 | 1−62T2+p2T4 |
| 89 | C2×C2 | (1+6T+pT2)(1+12T+pT2) |
| 97 | C2×C2 | (1−14T+pT2)(1+10T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.36828250900503417275095834972, −7.08427307801830795641955571937, −6.56770762327839215421996821253, −6.10544281123673679328718070451, −5.68752923116124310684381104274, −5.28337990826132128961816141009, −4.74340941157951287670358044241, −4.45701172528653151946818565300, −3.91174842651292112836066981197, −3.44997528715722504141228418169, −2.89616505606515762031794926470, −2.25423524075303761594945182227, −1.80090193517497396536391751852, −0.870024250421061824697470711606, 0,
0.870024250421061824697470711606, 1.80090193517497396536391751852, 2.25423524075303761594945182227, 2.89616505606515762031794926470, 3.44997528715722504141228418169, 3.91174842651292112836066981197, 4.45701172528653151946818565300, 4.74340941157951287670358044241, 5.28337990826132128961816141009, 5.68752923116124310684381104274, 6.10544281123673679328718070451, 6.56770762327839215421996821253, 7.08427307801830795641955571937, 7.36828250900503417275095834972