Properties

Label 4-2695275-1.1-c1e2-0-34
Degree $4$
Conductor $2695275$
Sign $1$
Analytic cond. $171.853$
Root an. cond. $3.62067$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·4-s + 4·5-s + 11-s + 5·16-s + 12·20-s + 11·25-s − 8·31-s + 3·44-s + 10·49-s + 4·55-s + 8·59-s + 3·64-s + 20·80-s + 33·100-s + 121-s − 24·124-s + 24·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 32·155-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  + 3/2·4-s + 1.78·5-s + 0.301·11-s + 5/4·16-s + 2.68·20-s + 11/5·25-s − 1.43·31-s + 0.452·44-s + 10/7·49-s + 0.539·55-s + 1.04·59-s + 3/8·64-s + 2.23·80-s + 3.29·100-s + 1/11·121-s − 2.15·124-s + 2.14·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 2.57·155-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2695275 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2695275 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2695275\)    =    \(3^{4} \cdot 5^{2} \cdot 11^{3}\)
Sign: $1$
Analytic conductor: \(171.853\)
Root analytic conductor: \(3.62067\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 2695275,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.733368776\)
\(L(\frac12)\) \(\approx\) \(5.733368776\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5$C_2$ \( 1 - 4 T + p T^{2} \)
11$C_1$ \( 1 - T \)
good2$C_2^2$ \( 1 - 3 T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
43$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 142 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.44071012856179454174115168498, −6.98461506866828385433924515992, −6.84884806265829454446157697534, −6.30325696612682555597887492081, −6.02499817336897508665224642231, −5.48878341540355437707060982436, −5.42457431972828552322534326719, −4.72801673816053907358368854207, −4.05560224434393851290900259231, −3.51309106430050388189908891790, −2.87537560535593228966647235605, −2.51187495471372643516646191681, −1.93873899637775283933678594487, −1.69569533896967354908280090098, −0.912271776203355030874824007294, 0.912271776203355030874824007294, 1.69569533896967354908280090098, 1.93873899637775283933678594487, 2.51187495471372643516646191681, 2.87537560535593228966647235605, 3.51309106430050388189908891790, 4.05560224434393851290900259231, 4.72801673816053907358368854207, 5.42457431972828552322534326719, 5.48878341540355437707060982436, 6.02499817336897508665224642231, 6.30325696612682555597887492081, 6.84884806265829454446157697534, 6.98461506866828385433924515992, 7.44071012856179454174115168498

Graph of the $Z$-function along the critical line