L(s) = 1 | + 3·4-s + 4·5-s + 11-s + 5·16-s + 12·20-s + 11·25-s − 8·31-s + 3·44-s + 10·49-s + 4·55-s + 8·59-s + 3·64-s + 20·80-s + 33·100-s + 121-s − 24·124-s + 24·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 32·155-s + 157-s + 163-s + 167-s + ⋯ |
L(s) = 1 | + 3/2·4-s + 1.78·5-s + 0.301·11-s + 5/4·16-s + 2.68·20-s + 11/5·25-s − 1.43·31-s + 0.452·44-s + 10/7·49-s + 0.539·55-s + 1.04·59-s + 3/8·64-s + 2.23·80-s + 3.29·100-s + 1/11·121-s − 2.15·124-s + 2.14·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 2.57·155-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯ |
Λ(s)=(=(2695275s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(2695275s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
2695275
= 34⋅52⋅113
|
Sign: |
1
|
Analytic conductor: |
171.853 |
Root analytic conductor: |
3.62067 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 2695275, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
5.733368776 |
L(21) |
≈ |
5.733368776 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 5 | C2 | 1−4T+pT2 |
| 11 | C1 | 1−T |
good | 2 | C22 | 1−3T2+p2T4 |
| 7 | C22 | 1−10T2+p2T4 |
| 13 | C22 | 1−22T2+p2T4 |
| 17 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 19 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 23 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 29 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 31 | C2 | (1+4T+pT2)2 |
| 37 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 41 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 43 | C22 | 1−50T2+p2T4 |
| 47 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 53 | C2 | (1+pT2)2 |
| 59 | C2 | (1−4T+pT2)2 |
| 61 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 67 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 71 | C2 | (1+pT2)2 |
| 73 | C22 | 1−142T2+p2T4 |
| 79 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 83 | C22 | 1−22T2+p2T4 |
| 89 | C2 | (1+pT2)2 |
| 97 | C2 | (1−2T+pT2)(1+2T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.44071012856179454174115168498, −6.98461506866828385433924515992, −6.84884806265829454446157697534, −6.30325696612682555597887492081, −6.02499817336897508665224642231, −5.48878341540355437707060982436, −5.42457431972828552322534326719, −4.72801673816053907358368854207, −4.05560224434393851290900259231, −3.51309106430050388189908891790, −2.87537560535593228966647235605, −2.51187495471372643516646191681, −1.93873899637775283933678594487, −1.69569533896967354908280090098, −0.912271776203355030874824007294,
0.912271776203355030874824007294, 1.69569533896967354908280090098, 1.93873899637775283933678594487, 2.51187495471372643516646191681, 2.87537560535593228966647235605, 3.51309106430050388189908891790, 4.05560224434393851290900259231, 4.72801673816053907358368854207, 5.42457431972828552322534326719, 5.48878341540355437707060982436, 6.02499817336897508665224642231, 6.30325696612682555597887492081, 6.84884806265829454446157697534, 6.98461506866828385433924515992, 7.44071012856179454174115168498