Properties

Label 4-270e2-1.1-c1e2-0-0
Degree $4$
Conductor $72900$
Sign $1$
Analytic cond. $4.64816$
Root an. cond. $1.46831$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s − 2·5-s − 10·11-s + 16-s + 12·19-s + 2·20-s − 25-s + 18·29-s − 10·31-s − 4·41-s + 10·44-s − 2·49-s + 20·55-s + 8·59-s + 16·61-s − 64-s − 12·71-s − 12·76-s − 18·79-s − 2·80-s + 28·89-s − 24·95-s + 100-s + 34·101-s + 16·109-s − 18·116-s + 53·121-s + ⋯
L(s)  = 1  − 1/2·4-s − 0.894·5-s − 3.01·11-s + 1/4·16-s + 2.75·19-s + 0.447·20-s − 1/5·25-s + 3.34·29-s − 1.79·31-s − 0.624·41-s + 1.50·44-s − 2/7·49-s + 2.69·55-s + 1.04·59-s + 2.04·61-s − 1/8·64-s − 1.42·71-s − 1.37·76-s − 2.02·79-s − 0.223·80-s + 2.96·89-s − 2.46·95-s + 1/10·100-s + 3.38·101-s + 1.53·109-s − 1.67·116-s + 4.81·121-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 72900 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 72900 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(72900\)    =    \(2^{2} \cdot 3^{6} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(4.64816\)
Root analytic conductor: \(1.46831\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 72900,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7849239150\)
\(L(\frac12)\) \(\approx\) \(0.7849239150\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T^{2} \)
3 \( 1 \)
5$C_2$ \( 1 + 2 T + p T^{2} \)
good7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - 17 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 33 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 45 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
41$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 85 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 + 75 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 118 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 142 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 150 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 - 94 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.89769067374391636887529350098, −11.87561603245051575796268994178, −11.31793659471600044250927206799, −10.53776100633995363109203415160, −10.30254307160049165617256383204, −9.969847939962603224254747069476, −9.378758793474960959401271820450, −8.513342707833681403545477686699, −8.338004551349270363214783236731, −7.79769039496498221610434142073, −7.32617079753435338208266015323, −7.10935009136792869828471020355, −5.90046417594827532212043252229, −5.48703993365752463016734000052, −4.86668218986048027350093842957, −4.71365690053750460241576598686, −3.44381070184137633120110012734, −3.17463155682276697949704959154, −2.36924923277547711882102037840, −0.69160204346165612079890437469, 0.69160204346165612079890437469, 2.36924923277547711882102037840, 3.17463155682276697949704959154, 3.44381070184137633120110012734, 4.71365690053750460241576598686, 4.86668218986048027350093842957, 5.48703993365752463016734000052, 5.90046417594827532212043252229, 7.10935009136792869828471020355, 7.32617079753435338208266015323, 7.79769039496498221610434142073, 8.338004551349270363214783236731, 8.513342707833681403545477686699, 9.378758793474960959401271820450, 9.969847939962603224254747069476, 10.30254307160049165617256383204, 10.53776100633995363109203415160, 11.31793659471600044250927206799, 11.87561603245051575796268994178, 11.89769067374391636887529350098

Graph of the $Z$-function along the critical line