Properties

Label 4-270e2-1.1-c7e2-0-9
Degree $4$
Conductor $72900$
Sign $1$
Analytic cond. $7113.90$
Root an. cond. $9.18389$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 16·2-s + 192·4-s − 250·5-s + 670·7-s + 2.04e3·8-s − 4.00e3·10-s + 570·11-s − 1.18e4·13-s + 1.07e4·14-s + 2.04e4·16-s − 5.16e3·17-s + 1.86e4·19-s − 4.80e4·20-s + 9.12e3·22-s − 9.67e4·23-s + 4.68e4·25-s − 1.89e5·26-s + 1.28e5·28-s − 9.93e4·29-s − 1.50e5·31-s + 1.96e5·32-s − 8.25e4·34-s − 1.67e5·35-s + 3.94e5·37-s + 2.98e5·38-s − 5.12e5·40-s − 2.41e5·41-s + ⋯
L(s)  = 1  + 1.41·2-s + 3/2·4-s − 0.894·5-s + 0.738·7-s + 1.41·8-s − 1.26·10-s + 0.129·11-s − 1.49·13-s + 1.04·14-s + 5/4·16-s − 0.254·17-s + 0.624·19-s − 1.34·20-s + 0.182·22-s − 1.65·23-s + 3/5·25-s − 2.11·26-s + 1.10·28-s − 0.756·29-s − 0.909·31-s + 1.06·32-s − 0.360·34-s − 0.660·35-s + 1.28·37-s + 0.883·38-s − 1.26·40-s − 0.547·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 72900 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 72900 ^{s/2} \, \Gamma_{\C}(s+7/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(72900\)    =    \(2^{2} \cdot 3^{6} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(7113.90\)
Root analytic conductor: \(9.18389\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 72900,\ (\ :7/2, 7/2),\ 1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - p^{3} T )^{2} \)
3 \( 1 \)
5$C_1$ \( ( 1 + p^{3} T )^{2} \)
good7$D_{4}$ \( 1 - 670 T + 1358442 T^{2} - 670 p^{7} T^{3} + p^{14} T^{4} \)
11$D_{4}$ \( 1 - 570 T + 12475498 T^{2} - 570 p^{7} T^{3} + p^{14} T^{4} \)
13$D_{4}$ \( 1 + 11870 T + 112216110 T^{2} + 11870 p^{7} T^{3} + p^{14} T^{4} \)
17$D_{4}$ \( 1 + 5160 T + 252823021 T^{2} + 5160 p^{7} T^{3} + p^{14} T^{4} \)
19$D_{4}$ \( 1 - 18676 T + 98584263 p T^{2} - 18676 p^{7} T^{3} + p^{14} T^{4} \)
23$D_{4}$ \( 1 + 96786 T + 7842573343 T^{2} + 96786 p^{7} T^{3} + p^{14} T^{4} \)
29$D_{4}$ \( 1 + 99390 T + 17592475342 T^{2} + 99390 p^{7} T^{3} + p^{14} T^{4} \)
31$D_{4}$ \( 1 + 150920 T + 50180471097 T^{2} + 150920 p^{7} T^{3} + p^{14} T^{4} \)
37$D_{4}$ \( 1 - 394900 T + 223295554110 T^{2} - 394900 p^{7} T^{3} + p^{14} T^{4} \)
41$D_{4}$ \( 1 + 241650 T + 226375649686 T^{2} + 241650 p^{7} T^{3} + p^{14} T^{4} \)
43$D_{4}$ \( 1 + 88130 T + 537150675714 T^{2} + 88130 p^{7} T^{3} + p^{14} T^{4} \)
47$D_{4}$ \( 1 + 61596 T + 191178794830 T^{2} + 61596 p^{7} T^{3} + p^{14} T^{4} \)
53$D_{4}$ \( 1 + 594696 T + 1679945159653 T^{2} + 594696 p^{7} T^{3} + p^{14} T^{4} \)
59$D_{4}$ \( 1 + 3633450 T + 8259065003674 T^{2} + 3633450 p^{7} T^{3} + p^{14} T^{4} \)
61$D_{4}$ \( 1 + 5602154 T + 14129219989071 T^{2} + 5602154 p^{7} T^{3} + p^{14} T^{4} \)
67$D_{4}$ \( 1 + 307880 T - 2839761751278 T^{2} + 307880 p^{7} T^{3} + p^{14} T^{4} \)
71$D_{4}$ \( 1 - 1734510 T + 18246163338682 T^{2} - 1734510 p^{7} T^{3} + p^{14} T^{4} \)
73$D_{4}$ \( 1 + 7493330 T + 36072611984838 T^{2} + 7493330 p^{7} T^{3} + p^{14} T^{4} \)
79$D_{4}$ \( 1 + 1304396 T + 29267153060997 T^{2} + 1304396 p^{7} T^{3} + p^{14} T^{4} \)
83$D_{4}$ \( 1 + 3908838 T + 36829760574415 T^{2} + 3908838 p^{7} T^{3} + p^{14} T^{4} \)
89$D_{4}$ \( 1 + 3346950 T + 8127447098614 T^{2} + 3346950 p^{7} T^{3} + p^{14} T^{4} \)
97$D_{4}$ \( 1 + 649760 T + 159873152761602 T^{2} + 649760 p^{7} T^{3} + p^{14} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.69196034752604961547346645634, −10.15331543228884956415740556181, −9.471401385841795841525823470567, −9.164008506041746637641828665535, −8.027912851533385391479401411695, −8.003716900544688999658944964269, −7.38107304282155557214243510690, −7.15934405890681364144534124860, −6.17678446798829538612241439947, −6.01079422675238843718164742736, −5.00464003402768331400974649396, −4.95398995262785637963758090527, −4.18538143078229269153094611259, −3.97164393624951599621558394651, −2.98317120419677995405682407444, −2.79035095425028834060811600901, −1.66403516536268690270679870655, −1.57142038149053958642123619892, 0, 0, 1.57142038149053958642123619892, 1.66403516536268690270679870655, 2.79035095425028834060811600901, 2.98317120419677995405682407444, 3.97164393624951599621558394651, 4.18538143078229269153094611259, 4.95398995262785637963758090527, 5.00464003402768331400974649396, 6.01079422675238843718164742736, 6.17678446798829538612241439947, 7.15934405890681364144534124860, 7.38107304282155557214243510690, 8.003716900544688999658944964269, 8.027912851533385391479401411695, 9.164008506041746637641828665535, 9.471401385841795841525823470567, 10.15331543228884956415740556181, 10.69196034752604961547346645634

Graph of the $Z$-function along the critical line