Properties

Label 4-275e2-1.1-c4e2-0-3
Degree $4$
Conductor $75625$
Sign $1$
Analytic cond. $808.079$
Root an. cond. $5.33167$
Motivic weight $4$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 32·4-s + 113·9-s + 242·11-s + 768·16-s − 1.10e3·31-s − 3.61e3·36-s − 7.74e3·44-s − 4.80e3·49-s − 8.97e3·59-s − 1.63e4·64-s + 1.52e4·71-s + 6.20e3·81-s + 1.28e4·89-s + 2.73e4·99-s + 4.39e4·121-s + 3.53e4·124-s + 127-s + 131-s + 137-s + 139-s + 8.67e4·144-s + 149-s + 151-s + 157-s + 163-s + 167-s − 5.71e4·169-s + ⋯
L(s)  = 1  − 2·4-s + 1.39·9-s + 2·11-s + 3·16-s − 1.15·31-s − 2.79·36-s − 4·44-s − 2·49-s − 2.57·59-s − 4·64-s + 3.01·71-s + 0.946·81-s + 1.62·89-s + 2.79·99-s + 3·121-s + 2.30·124-s + 6.20e−5·127-s + 5.82e−5·131-s + 5.32e−5·137-s + 5.17e−5·139-s + 4.18·144-s + 4.50e−5·149-s + 4.38e−5·151-s + 4.05e−5·157-s + 3.76e−5·163-s + 3.58e−5·167-s − 2·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 75625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 75625 ^{s/2} \, \Gamma_{\C}(s+2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(75625\)    =    \(5^{4} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(808.079\)
Root analytic conductor: \(5.33167\)
Motivic weight: \(4\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 75625,\ (\ :2, 2),\ 1)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(1.766755011\)
\(L(\frac12)\) \(\approx\) \(1.766755011\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5 \( 1 \)
11$C_1$ \( ( 1 - p^{2} T )^{2} \)
good2$C_2$ \( ( 1 + p^{4} T^{2} )^{2} \)
3$C_2^2$ \( 1 - 113 T^{2} + p^{8} T^{4} \)
7$C_2$ \( ( 1 + p^{4} T^{2} )^{2} \)
13$C_2$ \( ( 1 + p^{4} T^{2} )^{2} \)
17$C_2$ \( ( 1 + p^{4} T^{2} )^{2} \)
19$C_1$$\times$$C_1$ \( ( 1 - p^{2} T )^{2}( 1 + p^{2} T )^{2} \)
23$C_2^2$ \( 1 - 531793 T^{2} + p^{8} T^{4} \)
29$C_1$$\times$$C_1$ \( ( 1 - p^{2} T )^{2}( 1 + p^{2} T )^{2} \)
31$C_2$ \( ( 1 + 553 T + p^{4} T^{2} )^{2} \)
37$C_2^2$ \( 1 + 716447 T^{2} + p^{8} T^{4} \)
41$C_1$$\times$$C_1$ \( ( 1 - p^{2} T )^{2}( 1 + p^{2} T )^{2} \)
43$C_2$ \( ( 1 + p^{4} T^{2} )^{2} \)
47$C_2^2$ \( 1 - 6080638 T^{2} + p^{8} T^{4} \)
53$C_2^2$ \( 1 - 15265438 T^{2} + p^{8} T^{4} \)
59$C_2$ \( ( 1 + 4487 T + p^{4} T^{2} )^{2} \)
61$C_1$$\times$$C_1$ \( ( 1 - p^{2} T )^{2}( 1 + p^{2} T )^{2} \)
67$C_2^2$ \( 1 + 19806767 T^{2} + p^{8} T^{4} \)
71$C_2$ \( ( 1 - 7607 T + p^{4} T^{2} )^{2} \)
73$C_2$ \( ( 1 + p^{4} T^{2} )^{2} \)
79$C_1$$\times$$C_1$ \( ( 1 - p^{2} T )^{2}( 1 + p^{2} T )^{2} \)
83$C_2$ \( ( 1 + p^{4} T^{2} )^{2} \)
89$C_2$ \( ( 1 - 6433 T + p^{4} T^{2} )^{2} \)
97$C_2^2$ \( 1 - 81155713 T^{2} + p^{8} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.48152812952279563897102628047, −10.96872044767087128254926844887, −10.36394427571147721369816667372, −9.783528261104327143318067721812, −9.573136469690332014791485129406, −9.033813231425674942592153716524, −8.983834282855179531288334369345, −8.017680529824443050854606262888, −7.84833285472441898190516478253, −7.03667601314910477190073461991, −6.51016942087055852465120468581, −5.97958101989146993679428574080, −5.17385938273970372178132694456, −4.65642694562850814833195607106, −4.30301236033194151665562477655, −3.62670063700315456954093297146, −3.43534749541220864451446675126, −1.75079111856872514619090226375, −1.27014837927106578739213402356, −0.50342932016860919732708327961, 0.50342932016860919732708327961, 1.27014837927106578739213402356, 1.75079111856872514619090226375, 3.43534749541220864451446675126, 3.62670063700315456954093297146, 4.30301236033194151665562477655, 4.65642694562850814833195607106, 5.17385938273970372178132694456, 5.97958101989146993679428574080, 6.51016942087055852465120468581, 7.03667601314910477190073461991, 7.84833285472441898190516478253, 8.017680529824443050854606262888, 8.983834282855179531288334369345, 9.033813231425674942592153716524, 9.573136469690332014791485129406, 9.783528261104327143318067721812, 10.36394427571147721369816667372, 10.96872044767087128254926844887, 11.48152812952279563897102628047

Graph of the $Z$-function along the critical line