Properties

Label 4-288e2-1.1-c1e2-0-0
Degree $4$
Conductor $82944$
Sign $1$
Analytic cond. $5.28858$
Root an. cond. $1.51647$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s + 6·25-s − 4·29-s + 16·43-s + 16·47-s + 2·49-s − 4·53-s + 16·67-s − 4·73-s − 4·97-s + 12·101-s + 10·121-s − 4·125-s + 127-s + 131-s + 137-s + 139-s + 16·145-s + 149-s + 151-s + 157-s + 163-s + 167-s − 6·169-s + 173-s + 179-s + 181-s + ⋯
L(s)  = 1  − 1.78·5-s + 6/5·25-s − 0.742·29-s + 2.43·43-s + 2.33·47-s + 2/7·49-s − 0.549·53-s + 1.95·67-s − 0.468·73-s − 0.406·97-s + 1.19·101-s + 0.909·121-s − 0.357·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 1.32·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.461·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 82944 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 82944 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(82944\)    =    \(2^{10} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(5.28858\)
Root analytic conductor: \(1.51647\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 82944,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8936288390\)
\(L(\frac12)\) \(\approx\) \(0.8936288390\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
31$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
47$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2^2$ \( 1 - 114 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
97$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.565504660524871164429639749353, −9.179229446312042950041884690262, −8.668467112584194245612965425634, −8.093726389751628889142582368081, −7.70886957630587378585693144732, −7.29137810039080651436041493822, −6.90214249458276816357066801553, −6.00310676113253204592181985375, −5.59243936017597682743853641828, −4.77402050493821787769685843993, −4.04928972735847412597755451883, −3.93221712202519314306514798934, −3.07164921560281842898328652629, −2.22083735125283592604328598269, −0.72659832192592192616029365764, 0.72659832192592192616029365764, 2.22083735125283592604328598269, 3.07164921560281842898328652629, 3.93221712202519314306514798934, 4.04928972735847412597755451883, 4.77402050493821787769685843993, 5.59243936017597682743853641828, 6.00310676113253204592181985375, 6.90214249458276816357066801553, 7.29137810039080651436041493822, 7.70886957630587378585693144732, 8.093726389751628889142582368081, 8.668467112584194245612965425634, 9.179229446312042950041884690262, 9.565504660524871164429639749353

Graph of the $Z$-function along the critical line