L(s) = 1 | − 4·5-s + 6·25-s − 4·29-s + 16·43-s + 16·47-s + 2·49-s − 4·53-s + 16·67-s − 4·73-s − 4·97-s + 12·101-s + 10·121-s − 4·125-s + 127-s + 131-s + 137-s + 139-s + 16·145-s + 149-s + 151-s + 157-s + 163-s + 167-s − 6·169-s + 173-s + 179-s + 181-s + ⋯ |
L(s) = 1 | − 1.78·5-s + 6/5·25-s − 0.742·29-s + 2.43·43-s + 2.33·47-s + 2/7·49-s − 0.549·53-s + 1.95·67-s − 0.468·73-s − 0.406·97-s + 1.19·101-s + 0.909·121-s − 0.357·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 1.32·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.461·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯ |
Λ(s)=(=(82944s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(82944s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
82944
= 210⋅34
|
Sign: |
1
|
Analytic conductor: |
5.28858 |
Root analytic conductor: |
1.51647 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 82944, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.8936288390 |
L(21) |
≈ |
0.8936288390 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
good | 5 | C2×C2 | (1+pT2)(1+4T+pT2) |
| 7 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 11 | C22 | 1−10T2+p2T4 |
| 13 | C22 | 1+6T2+p2T4 |
| 17 | C22 | 1+2T2+p2T4 |
| 19 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 23 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 29 | C2×C2 | (1−4T+pT2)(1+8T+pT2) |
| 31 | C22 | 1+14T2+p2T4 |
| 37 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 41 | C22 | 1−46T2+p2T4 |
| 43 | C2×C2 | (1−12T+pT2)(1−4T+pT2) |
| 47 | C2×C2 | (1−12T+pT2)(1−4T+pT2) |
| 53 | C2×C2 | (1+pT2)(1+4T+pT2) |
| 59 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 61 | C22 | 1−10T2+p2T4 |
| 67 | C2×C2 | (1−12T+pT2)(1−4T+pT2) |
| 71 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 73 | C2×C2 | (1−6T+pT2)(1+10T+pT2) |
| 79 | C22 | 1−114T2+p2T4 |
| 83 | C22 | 1+6T2+p2T4 |
| 89 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 97 | C2 | (1+2T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.565504660524871164429639749353, −9.179229446312042950041884690262, −8.668467112584194245612965425634, −8.093726389751628889142582368081, −7.70886957630587378585693144732, −7.29137810039080651436041493822, −6.90214249458276816357066801553, −6.00310676113253204592181985375, −5.59243936017597682743853641828, −4.77402050493821787769685843993, −4.04928972735847412597755451883, −3.93221712202519314306514798934, −3.07164921560281842898328652629, −2.22083735125283592604328598269, −0.72659832192592192616029365764,
0.72659832192592192616029365764, 2.22083735125283592604328598269, 3.07164921560281842898328652629, 3.93221712202519314306514798934, 4.04928972735847412597755451883, 4.77402050493821787769685843993, 5.59243936017597682743853641828, 6.00310676113253204592181985375, 6.90214249458276816357066801553, 7.29137810039080651436041493822, 7.70886957630587378585693144732, 8.093726389751628889142582368081, 8.668467112584194245612965425634, 9.179229446312042950041884690262, 9.565504660524871164429639749353