Properties

Label 4-288e2-1.1-c5e2-0-1
Degree $4$
Conductor $82944$
Sign $1$
Analytic cond. $2133.56$
Root an. cond. $6.79636$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 36·5-s − 120·7-s + 200·11-s + 284·13-s − 2.67e3·17-s + 72·19-s − 3.84e3·23-s + 2.65e3·25-s − 1.02e4·29-s + 1.04e4·31-s + 4.32e3·35-s + 1.31e4·37-s − 4.16e3·41-s − 5.83e3·43-s − 1.52e3·47-s − 1.48e4·49-s − 9.01e3·53-s − 7.20e3·55-s + 5.50e4·59-s − 6.34e4·61-s − 1.02e4·65-s + 3.67e4·67-s − 3.76e4·71-s − 3.78e4·73-s − 2.40e4·77-s + 1.44e5·79-s + 1.09e5·83-s + ⋯
L(s)  = 1  − 0.643·5-s − 0.925·7-s + 0.498·11-s + 0.466·13-s − 2.24·17-s + 0.0457·19-s − 1.51·23-s + 0.850·25-s − 2.25·29-s + 1.96·31-s + 0.596·35-s + 1.57·37-s − 0.386·41-s − 0.481·43-s − 0.100·47-s − 0.885·49-s − 0.440·53-s − 0.320·55-s + 2.06·59-s − 2.18·61-s − 0.300·65-s + 1.00·67-s − 0.886·71-s − 0.830·73-s − 0.461·77-s + 2.61·79-s + 1.74·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 82944 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 82944 ^{s/2} \, \Gamma_{\C}(s+5/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(82944\)    =    \(2^{10} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(2133.56\)
Root analytic conductor: \(6.79636\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 82944,\ (\ :5/2, 5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.2590648598\)
\(L(\frac12)\) \(\approx\) \(0.2590648598\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$D_{4}$ \( 1 + 36 T - 1362 T^{2} + 36 p^{5} T^{3} + p^{10} T^{4} \)
7$D_{4}$ \( 1 + 120 T + 29278 T^{2} + 120 p^{5} T^{3} + p^{10} T^{4} \)
11$D_{4}$ \( 1 - 200 T + 46406 T^{2} - 200 p^{5} T^{3} + p^{10} T^{4} \)
13$D_{4}$ \( 1 - 284 T + 477054 T^{2} - 284 p^{5} T^{3} + p^{10} T^{4} \)
17$D_{4}$ \( 1 + 2676 T + 4344262 T^{2} + 2676 p^{5} T^{3} + p^{10} T^{4} \)
19$D_{4}$ \( 1 - 72 T + 4159894 T^{2} - 72 p^{5} T^{3} + p^{10} T^{4} \)
23$D_{4}$ \( 1 + 3840 T + 9416686 T^{2} + 3840 p^{5} T^{3} + p^{10} T^{4} \)
29$D_{4}$ \( 1 + 10212 T + 64228638 T^{2} + 10212 p^{5} T^{3} + p^{10} T^{4} \)
31$D_{4}$ \( 1 - 10488 T + 84559438 T^{2} - 10488 p^{5} T^{3} + p^{10} T^{4} \)
37$D_{4}$ \( 1 - 13148 T + 125908974 T^{2} - 13148 p^{5} T^{3} + p^{10} T^{4} \)
41$D_{4}$ \( 1 + 4164 T + 216207126 T^{2} + 4164 p^{5} T^{3} + p^{10} T^{4} \)
43$D_{4}$ \( 1 + 5832 T + 168401542 T^{2} + 5832 p^{5} T^{3} + p^{10} T^{4} \)
47$D_{4}$ \( 1 + 1520 T + 148144670 T^{2} + 1520 p^{5} T^{3} + p^{10} T^{4} \)
53$D_{4}$ \( 1 + 9012 T + 816689646 T^{2} + 9012 p^{5} T^{3} + p^{10} T^{4} \)
59$D_{4}$ \( 1 - 55096 T + 1818478886 T^{2} - 55096 p^{5} T^{3} + p^{10} T^{4} \)
61$D_{4}$ \( 1 + 63444 T + 2677193342 T^{2} + 63444 p^{5} T^{3} + p^{10} T^{4} \)
67$D_{4}$ \( 1 - 36792 T + 1148752246 T^{2} - 36792 p^{5} T^{3} + p^{10} T^{4} \)
71$D_{4}$ \( 1 + 37664 T + 2440628942 T^{2} + 37664 p^{5} T^{3} + p^{10} T^{4} \)
73$D_{4}$ \( 1 + 37836 T + 2085902966 T^{2} + 37836 p^{5} T^{3} + p^{10} T^{4} \)
79$D_{4}$ \( 1 - 144888 T + 10711615534 T^{2} - 144888 p^{5} T^{3} + p^{10} T^{4} \)
83$D_{4}$ \( 1 - 109272 T + 10472055958 T^{2} - 109272 p^{5} T^{3} + p^{10} T^{4} \)
89$D_{4}$ \( 1 - 32556 T + 8836559958 T^{2} - 32556 p^{5} T^{3} + p^{10} T^{4} \)
97$D_{4}$ \( 1 - 69092 T + 18339537030 T^{2} - 69092 p^{5} T^{3} + p^{10} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.10349898750354388844759098873, −10.99592506406160479889289097081, −10.15761506248492035931915018225, −9.813597982188160246565459516624, −9.207721128276852356687927329682, −8.951303769847119867169886672344, −8.304242936937685415001827320874, −7.88489096029691078771304770369, −7.32347867296518986850370489202, −6.62992318519195227892801964667, −6.25151844223162851296684755208, −6.10173524444721992750269603546, −4.91926282841069563636886183455, −4.57694241511532075752866878131, −3.71737995047683625391745563519, −3.67160078121328846309029964919, −2.59405891947027587264839096536, −2.09299084263045959209608581651, −1.11808101953705506783798796545, −0.15018176816877938014164731810, 0.15018176816877938014164731810, 1.11808101953705506783798796545, 2.09299084263045959209608581651, 2.59405891947027587264839096536, 3.67160078121328846309029964919, 3.71737995047683625391745563519, 4.57694241511532075752866878131, 4.91926282841069563636886183455, 6.10173524444721992750269603546, 6.25151844223162851296684755208, 6.62992318519195227892801964667, 7.32347867296518986850370489202, 7.88489096029691078771304770369, 8.304242936937685415001827320874, 8.951303769847119867169886672344, 9.207721128276852356687927329682, 9.813597982188160246565459516624, 10.15761506248492035931915018225, 10.99592506406160479889289097081, 11.10349898750354388844759098873

Graph of the $Z$-function along the critical line