L(s) = 1 | − 14·3-s − 42·5-s − 146·9-s + 716·11-s + 714·13-s + 588·15-s + 1.34e3·17-s − 1.94e3·19-s + 1.79e3·23-s − 102·25-s + 3.43e3·27-s − 1.20e3·29-s − 6.80e3·31-s − 1.00e4·33-s + 1.46e4·37-s − 9.99e3·39-s − 7.89e3·41-s − 524·43-s + 6.13e3·45-s − 1.83e4·47-s − 1.88e4·51-s + 4.51e4·53-s − 3.00e4·55-s + 2.72e4·57-s + 2.25e4·59-s + 5.28e4·61-s − 2.99e4·65-s + ⋯ |
L(s) = 1 | − 0.898·3-s − 0.751·5-s − 0.600·9-s + 1.78·11-s + 1.17·13-s + 0.674·15-s + 1.12·17-s − 1.23·19-s + 0.706·23-s − 0.0326·25-s + 0.905·27-s − 0.264·29-s − 1.27·31-s − 1.60·33-s + 1.75·37-s − 1.05·39-s − 0.733·41-s − 0.0432·43-s + 0.451·45-s − 1.21·47-s − 1.01·51-s + 2.20·53-s − 1.34·55-s + 1.11·57-s + 0.844·59-s + 1.81·61-s − 0.880·65-s + ⋯ |
Λ(s)=(=(614656s/2ΓC(s)2L(s)Λ(6−s)
Λ(s)=(=(614656s/2ΓC(s+5/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
614656
= 28⋅74
|
Sign: |
1
|
Analytic conductor: |
15810.7 |
Root analytic conductor: |
11.2134 |
Motivic weight: |
5 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 614656, ( :5/2,5/2), 1)
|
Particular Values
L(3) |
≈ |
2.380266718 |
L(21) |
≈ |
2.380266718 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 7 | | 1 |
good | 3 | D4 | 1+14T+38p2T2+14p5T3+p10T4 |
| 5 | D4 | 1+42T+1866T2+42p5T3+p10T4 |
| 11 | D4 | 1−716T+412438T2−716p5T3+p10T4 |
| 13 | D4 | 1−714T+814258T2−714p5T3+p10T4 |
| 17 | D4 | 1−1344T+2728510T2−1344p5T3+p10T4 |
| 19 | D4 | 1+1946T+4229670T2+1946p5T3+p10T4 |
| 23 | D4 | 1−1792T+11254510T2−1792p5T3+p10T4 |
| 29 | D4 | 1+1200T−16154090T2+1200p5T3+p10T4 |
| 31 | D4 | 1+6804T+30441118T2+6804p5T3+p10T4 |
| 37 | D4 | 1−14640T+187693126T2−14640p5T3+p10T4 |
| 41 | D4 | 1+7896T+209593854T2+7896p5T3+p10T4 |
| 43 | D4 | 1+524T+242298998T2+524p5T3+p10T4 |
| 47 | D4 | 1+18396T+435885630T2+18396p5T3+p10T4 |
| 53 | D4 | 1−45132T+1149514990T2−45132p5T3+p10T4 |
| 59 | D4 | 1−22582T+1531622854T2−22582p5T3+p10T4 |
| 61 | D4 | 1−52822T+2145929546T2−52822p5T3+p10T4 |
| 67 | D4 | 1+9848T+2714812022T2+9848p5T3+p10T4 |
| 71 | D4 | 1−840T+427300302T2−840p5T3+p10T4 |
| 73 | D4 | 1−122052T+7590539974T2−122052p5T3+p10T4 |
| 79 | D4 | 1+31704T+6042098590T2+31704p5T3+p10T4 |
| 83 | D4 | 1−36974T+4839605030T2−36974p5T3+p10T4 |
| 89 | D4 | 1−210588T+21813719542T2−210588p5T3+p10T4 |
| 97 | D4 | 1−44240T+2438219582T2−44240p5T3+p10T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.578982954577354140998459930130, −9.451829956363657024653924548405, −8.693338469435825687156315515797, −8.617672310747782743644422657205, −8.099598967670141187943732271770, −7.65982384080178357680129619593, −6.92575044714805092815355437719, −6.72950774177481179857760282477, −6.14474069399899338652475443250, −5.99238098266184798073509570135, −5.18186134089938980220879483256, −5.14689426228218125915424948791, −4.03419559650972499618254299015, −3.89987593956695652274807072993, −3.61453825582208525683394019018, −2.83221284806293859105693043651, −2.07029295629872772380746580973, −1.39365303183960622037605298210, −0.77119680208208657256980920474, −0.48807134220357997457458023684,
0.48807134220357997457458023684, 0.77119680208208657256980920474, 1.39365303183960622037605298210, 2.07029295629872772380746580973, 2.83221284806293859105693043651, 3.61453825582208525683394019018, 3.89987593956695652274807072993, 4.03419559650972499618254299015, 5.14689426228218125915424948791, 5.18186134089938980220879483256, 5.99238098266184798073509570135, 6.14474069399899338652475443250, 6.72950774177481179857760282477, 6.92575044714805092815355437719, 7.65982384080178357680129619593, 8.099598967670141187943732271770, 8.617672310747782743644422657205, 8.693338469435825687156315515797, 9.451829956363657024653924548405, 9.578982954577354140998459930130