L(s) = 1 | + 14·3-s − 42·5-s + 181·9-s + 294·11-s − 140·13-s − 588·15-s + 1.30e3·17-s + 1.44e3·19-s − 2.64e3·23-s − 4.92e3·25-s + 5.72e3·27-s + 1.66e3·29-s + 1.47e4·31-s + 4.11e3·33-s + 5.18e3·37-s − 1.96e3·39-s − 5.12e3·41-s + 4.52e3·43-s − 7.60e3·45-s + 1.49e4·47-s + 1.82e4·51-s + 2.40e4·53-s − 1.23e4·55-s + 2.01e4·57-s − 3.88e4·59-s − 2.36e4·61-s + 5.88e3·65-s + ⋯ |
L(s) = 1 | + 0.898·3-s − 0.751·5-s + 0.744·9-s + 0.732·11-s − 0.229·13-s − 0.674·15-s + 1.09·17-s + 0.916·19-s − 1.04·23-s − 1.57·25-s + 1.51·27-s + 0.368·29-s + 2.76·31-s + 0.657·33-s + 0.622·37-s − 0.206·39-s − 0.476·41-s + 0.372·43-s − 0.559·45-s + 0.990·47-s + 0.981·51-s + 1.17·53-s − 0.550·55-s + 0.823·57-s − 1.45·59-s − 0.812·61-s + 0.172·65-s + ⋯ |
Λ(s)=(=(614656s/2ΓC(s)2L(s)Λ(6−s)
Λ(s)=(=(614656s/2ΓC(s+5/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
614656
= 28⋅74
|
Sign: |
1
|
Analytic conductor: |
15810.7 |
Root analytic conductor: |
11.2134 |
Motivic weight: |
5 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 614656, ( :5/2,5/2), 1)
|
Particular Values
L(3) |
≈ |
5.817048578 |
L(21) |
≈ |
5.817048578 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 7 | | 1 |
good | 3 | D4 | 1−14T+5pT2−14p5T3+p10T4 |
| 5 | C2 | (1+21T+p5T2)2 |
| 11 | D4 | 1−294T+114391T2−294p5T3+p10T4 |
| 13 | D4 | 1+140T+728766T2+140p5T3+p10T4 |
| 17 | D4 | 1−1302T+3095035T2−1302p5T3+p10T4 |
| 19 | D4 | 1−1442T+4119519T2−1442p5T3+p10T4 |
| 23 | D4 | 1+2646T+8890015T2+2646p5T3+p10T4 |
| 29 | D4 | 1−1668T+40800574T2−1668p5T3+p10T4 |
| 31 | D4 | 1−14798T+109078503T2−14798p5T3+p10T4 |
| 37 | D4 | 1−5182T+71101515T2−5182p5T3+p10T4 |
| 41 | D4 | 1+5124T+23950966T2+5124p5T3+p10T4 |
| 43 | D4 | 1−4520T+240418566T2−4520p5T3+p10T4 |
| 47 | D4 | 1−14994T+427056103T2−14994p5T3+p10T4 |
| 53 | D4 | 1−24006T+935516275T2−24006p5T3+p10T4 |
| 59 | D4 | 1+38850T+1324947343T2+38850p5T3+p10T4 |
| 61 | D4 | 1+23618T+1734277563T2+23618p5T3+p10T4 |
| 67 | D4 | 1+32002T+1139838495T2+32002p5T3+p10T4 |
| 71 | D4 | 1−89376T+5425689166T2−89376p5T3+p10T4 |
| 73 | D4 | 1+47138T+4432072947T2+47138p5T3+p10T4 |
| 79 | D4 | 1−40970T+6023150703T2−40970p5T3+p10T4 |
| 83 | D4 | 1+68376T+8908447510T2+68376p5T3+p10T4 |
| 89 | D4 | 1−123102T+13551221779T2−123102p5T3+p10T4 |
| 97 | D4 | 1+43652T+8867162790T2+43652p5T3+p10T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.781033030044834136119114271841, −9.386328555661137466794587455250, −8.660911861215947246859385904483, −8.629000350234050557449025953754, −7.80542821429889573465511720678, −7.76291644811865227322924008998, −7.49475661433990486094304128338, −6.76167899013312170564189480595, −6.19480858536123440781376662154, −6.03557594406199370798544250606, −5.20324449079067706237171438206, −4.68266917979253238955802365286, −4.15584153152647268606535579632, −3.90839344006863622562427890211, −3.21741337691319608164364491180, −2.90364524360692666053296665477, −2.25744959001926327203080281883, −1.58262588482208672471368590753, −0.927685826378288273855472556890, −0.56260882415400124601759883494,
0.56260882415400124601759883494, 0.927685826378288273855472556890, 1.58262588482208672471368590753, 2.25744959001926327203080281883, 2.90364524360692666053296665477, 3.21741337691319608164364491180, 3.90839344006863622562427890211, 4.15584153152647268606535579632, 4.68266917979253238955802365286, 5.20324449079067706237171438206, 6.03557594406199370798544250606, 6.19480858536123440781376662154, 6.76167899013312170564189480595, 7.49475661433990486094304128338, 7.76291644811865227322924008998, 7.80542821429889573465511720678, 8.629000350234050557449025953754, 8.660911861215947246859385904483, 9.386328555661137466794587455250, 9.781033030044834136119114271841