L(s) = 1 | + 8·2-s + 18·3-s + 48·4-s + 18·5-s + 144·6-s + 256·8-s + 243·9-s + 144·10-s + 2·11-s + 864·12-s + 288·13-s + 324·15-s + 1.28e3·16-s + 1.53e3·17-s + 1.94e3·18-s + 1.18e3·19-s + 864·20-s + 16·22-s + 3.39e3·23-s + 4.60e3·24-s − 1.30e3·25-s + 2.30e3·26-s + 2.91e3·27-s − 3.97e3·29-s + 2.59e3·30-s + 7.59e3·31-s + 6.14e3·32-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 1.15·3-s + 3/2·4-s + 0.321·5-s + 1.63·6-s + 1.41·8-s + 9-s + 0.455·10-s + 0.00498·11-s + 1.73·12-s + 0.472·13-s + 0.371·15-s + 5/4·16-s + 1.28·17-s + 1.41·18-s + 0.754·19-s + 0.482·20-s + 0.00704·22-s + 1.33·23-s + 1.63·24-s − 0.416·25-s + 0.668·26-s + 0.769·27-s − 0.877·29-s + 0.525·30-s + 1.41·31-s + 1.06·32-s + ⋯ |
Λ(s)=(=(86436s/2ΓC(s)2L(s)Λ(6−s)
Λ(s)=(=(86436s/2ΓC(s+5/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
86436
= 22⋅32⋅74
|
Sign: |
1
|
Analytic conductor: |
2223.39 |
Root analytic conductor: |
6.86679 |
Motivic weight: |
5 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 86436, ( :5/2,5/2), 1)
|
Particular Values
L(3) |
≈ |
19.62804613 |
L(21) |
≈ |
19.62804613 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1−p2T)2 |
| 3 | C1 | (1−p2T)2 |
| 7 | | 1 |
good | 5 | D4 | 1−18T+1626T2−18p5T3+p10T4 |
| 11 | D4 | 1−2T−59002T2−2p5T3+p10T4 |
| 13 | D4 | 1−288T+688042T2−288p5T3+p10T4 |
| 17 | D4 | 1−90pT+2366314T2−90p6T3+p10T4 |
| 19 | D4 | 1−1188T+4834534T2−1188p5T3+p10T4 |
| 23 | D4 | 1−3390T+6218086T2−3390p5T3+p10T4 |
| 29 | D4 | 1+3976T+31254662T2+3976p5T3+p10T4 |
| 31 | D4 | 1−7596T+61727326T2−7596p5T3+p10T4 |
| 37 | D4 | 1−2688T+126774470T2−2688p5T3+p10T4 |
| 41 | D4 | 1−36630T+559995322T2−36630p5T3+p10T4 |
| 43 | D4 | 1+23032T+329072262T2+23032p5T3+p10T4 |
| 47 | D4 | 1−864T+46643358T2−864p5T3+p10T4 |
| 53 | D4 | 1+32920T+983844566T2+32920p5T3+p10T4 |
| 59 | D4 | 1+26712T+697343334T2+26712p5T3+p10T4 |
| 61 | D4 | 1−20412T+1230091258T2−20412p5T3+p10T4 |
| 67 | D4 | 1+36172T+33148290pT2+36172p5T3+p10T4 |
| 71 | D4 | 1−73706T+3356433686T2−73706p5T3+p10T4 |
| 73 | D4 | 1+74772T+3993671602T2+74772p5T3+p10T4 |
| 79 | D4 | 1+23116T+6249589662T2+23116p5T3+p10T4 |
| 83 | D4 | 1−147816T+13316083030T2−147816p5T3+p10T4 |
| 89 | D4 | 1−164646T+17878567722T2−164646p5T3+p10T4 |
| 97 | D4 | 1−162036T+20528488258T2−162036p5T3+p10T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.03126449600863208109055982126, −11.00471394897125006080699569534, −10.21015340067008375016439628505, −9.724665766568722305175836917371, −9.356517174017467275586622541514, −8.849245838852459243027358653511, −8.030569639097068673788683219051, −7.73122648234537336719519786689, −7.38916085927152052026579388151, −6.65197399475395838663448612034, −6.08625616193183677395384595949, −5.73821327159221643919228818660, −4.79343678164705587341720345002, −4.74491002185730943442141796740, −3.63689787001847966387176938758, −3.49898359280308871950861336258, −2.80945490551206674681251538260, −2.32358838506610979906653471636, −1.40505268813211093398721159124, −0.950314725667538151007569784201,
0.950314725667538151007569784201, 1.40505268813211093398721159124, 2.32358838506610979906653471636, 2.80945490551206674681251538260, 3.49898359280308871950861336258, 3.63689787001847966387176938758, 4.74491002185730943442141796740, 4.79343678164705587341720345002, 5.73821327159221643919228818660, 6.08625616193183677395384595949, 6.65197399475395838663448612034, 7.38916085927152052026579388151, 7.73122648234537336719519786689, 8.030569639097068673788683219051, 8.849245838852459243027358653511, 9.356517174017467275586622541514, 9.724665766568722305175836917371, 10.21015340067008375016439628505, 11.00471394897125006080699569534, 11.03126449600863208109055982126