Properties

Label 4-2e14-1.1-c1e2-0-8
Degree $4$
Conductor $16384$
Sign $-1$
Analytic cond. $1.04465$
Root an. cond. $1.01098$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s − 2·9-s − 4·13-s − 4·17-s + 2·25-s + 12·29-s − 20·37-s − 12·41-s + 8·45-s + 2·49-s + 12·53-s − 4·61-s + 16·65-s + 28·73-s − 5·81-s + 16·85-s − 4·89-s − 4·97-s + 12·101-s + 12·109-s + 4·113-s + 8·117-s − 18·121-s + 28·125-s + 127-s + 131-s + 137-s + ⋯
L(s)  = 1  − 1.78·5-s − 2/3·9-s − 1.10·13-s − 0.970·17-s + 2/5·25-s + 2.22·29-s − 3.28·37-s − 1.87·41-s + 1.19·45-s + 2/7·49-s + 1.64·53-s − 0.512·61-s + 1.98·65-s + 3.27·73-s − 5/9·81-s + 1.73·85-s − 0.423·89-s − 0.406·97-s + 1.19·101-s + 1.14·109-s + 0.376·113-s + 0.739·117-s − 1.63·121-s + 2.50·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 16384 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16384 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(16384\)    =    \(2^{14}\)
Sign: $-1$
Analytic conductor: \(1.04465\)
Root analytic conductor: \(1.01098\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 16384,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
good3$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
5$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
61$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.90944990278511493765148592647, −10.22941768705266383849925633731, −9.886348706897054809183790479328, −8.728992519223720851294830795286, −8.635939205168057076823393046651, −8.098681382024412731658064042949, −7.33738117792255002879146989083, −6.97464122003923989664965494039, −6.33050260025483473718379487161, −5.16542238567969836254694300670, −4.84373431553687523132526670248, −3.91058908136761919842529082491, −3.36730269661969347724618284285, −2.30676446591740616355718333113, 0, 2.30676446591740616355718333113, 3.36730269661969347724618284285, 3.91058908136761919842529082491, 4.84373431553687523132526670248, 5.16542238567969836254694300670, 6.33050260025483473718379487161, 6.97464122003923989664965494039, 7.33738117792255002879146989083, 8.098681382024412731658064042949, 8.635939205168057076823393046651, 8.728992519223720851294830795286, 9.886348706897054809183790479328, 10.22941768705266383849925633731, 10.90944990278511493765148592647

Graph of the $Z$-function along the critical line