L(s) = 1 | − 2·2-s + 12·3-s − 12·4-s − 24·6-s + 56·8-s − 54·9-s − 52·11-s − 144·12-s + 80·16-s + 452·17-s + 108·18-s + 268·19-s + 104·22-s + 672·24-s + 290·25-s − 2.05e3·27-s − 1.05e3·32-s − 624·33-s − 904·34-s + 648·36-s − 536·38-s + 1.98e3·41-s − 3.76e3·43-s + 624·44-s + 960·48-s + 962·49-s − 580·50-s + ⋯ |
L(s) = 1 | − 1/2·2-s + 4/3·3-s − 3/4·4-s − 2/3·6-s + 7/8·8-s − 2/3·9-s − 0.429·11-s − 12-s + 5/16·16-s + 1.56·17-s + 1/3·18-s + 0.742·19-s + 0.214·22-s + 7/6·24-s + 0.463·25-s − 2.81·27-s − 1.03·32-s − 0.573·33-s − 0.782·34-s + 1/2·36-s − 0.371·38-s + 1.18·41-s − 2.03·43-s + 0.322·44-s + 5/12·48-s + 0.400·49-s − 0.231·50-s + ⋯ |
Λ(s)=(=(64s/2ΓC(s)2L(s)Λ(5−s)
Λ(s)=(=(64s/2ΓC(s+2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
64
= 26
|
Sign: |
1
|
Analytic conductor: |
0.683862 |
Root analytic conductor: |
0.909373 |
Motivic weight: |
4 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 64, ( :2,2), 1)
|
Particular Values
L(25) |
≈ |
0.8674721287 |
L(21) |
≈ |
0.8674721287 |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+pT+p4T2 |
good | 3 | C2 | (1−2pT+p4T2)2 |
| 5 | C22 | 1−58pT2+p8T4 |
| 7 | C22 | 1−962T2+p8T4 |
| 11 | C2 | (1+26T+p4T2)2 |
| 13 | C22 | 1−56162T2+p8T4 |
| 17 | C2 | (1−226T+p4T2)2 |
| 19 | C2 | (1−134T+p4T2)2 |
| 23 | C22 | 1−463682T2+p8T4 |
| 29 | C22 | 1−1298402T2+p8T4 |
| 31 | C22 | 1−311042T2+p8T4 |
| 37 | C22 | 1−629282T2+p8T4 |
| 41 | C2 | (1−994T+p4T2)2 |
| 43 | C2 | (1+1882T+p4T2)2 |
| 47 | C22 | 1−5320322T2+p8T4 |
| 53 | C22 | 1−1257122T2+p8T4 |
| 59 | C2 | (1+5018T+p4T2)2 |
| 61 | C22 | 1−23382242T2+p8T4 |
| 67 | C2 | (1−8006T+p4T2)2 |
| 71 | C22 | 1−50512322T2+p8T4 |
| 73 | C2 | (1−386T+p4T2)2 |
| 79 | C22 | 1+43766398T2+p8T4 |
| 83 | C2 | (1+2234T+p4T2)2 |
| 89 | C2 | (1+10046T+p4T2)2 |
| 97 | C2 | (1−8738T+p4T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−21.41974751600567597501507952751, −20.75851879792913376932067769058, −19.88017054250292570081466802057, −19.75554523375872504894024081820, −18.57549211362932464980201114502, −18.47094474270830168394216425506, −17.11849225917962360839081028424, −16.84746508040984966204166572848, −15.59975009337965161486346141718, −14.54604406493841985013454267836, −14.18644411469039162318032379072, −13.54086326319204164680456829676, −12.49505108077315281617686365600, −11.25256454262619031776370893028, −9.965584594603764605037194581979, −9.223835836731734465687979184813, −8.300859782990254159011153936074, −7.73365253042416185622777892779, −5.42938113619192888783297542980, −3.27029599977862769934910771922,
3.27029599977862769934910771922, 5.42938113619192888783297542980, 7.73365253042416185622777892779, 8.300859782990254159011153936074, 9.223835836731734465687979184813, 9.965584594603764605037194581979, 11.25256454262619031776370893028, 12.49505108077315281617686365600, 13.54086326319204164680456829676, 14.18644411469039162318032379072, 14.54604406493841985013454267836, 15.59975009337965161486346141718, 16.84746508040984966204166572848, 17.11849225917962360839081028424, 18.47094474270830168394216425506, 18.57549211362932464980201114502, 19.75554523375872504894024081820, 19.88017054250292570081466802057, 20.75851879792913376932067769058, 21.41974751600567597501507952751