L(s) = 1 | + 2·3-s + 3·9-s + 6·13-s − 12·17-s + 16·23-s − 6·25-s + 4·27-s + 12·29-s + 12·39-s − 8·43-s + 10·49-s − 24·51-s − 20·53-s − 4·61-s + 32·69-s − 12·75-s + 5·81-s + 24·87-s + 12·101-s + 16·103-s − 8·107-s − 12·113-s + 18·117-s + 18·121-s + 127-s − 16·129-s + 131-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 9-s + 1.66·13-s − 2.91·17-s + 3.33·23-s − 6/5·25-s + 0.769·27-s + 2.22·29-s + 1.92·39-s − 1.21·43-s + 10/7·49-s − 3.36·51-s − 2.74·53-s − 0.512·61-s + 3.85·69-s − 1.38·75-s + 5/9·81-s + 2.57·87-s + 1.19·101-s + 1.57·103-s − 0.773·107-s − 1.12·113-s + 1.66·117-s + 1.63·121-s + 0.0887·127-s − 1.40·129-s + 0.0873·131-s + ⋯ |
Λ(s)=(=(97344s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(97344s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
97344
= 26⋅32⋅132
|
Sign: |
1
|
Analytic conductor: |
6.20673 |
Root analytic conductor: |
1.57839 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 97344, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.432249822 |
L(21) |
≈ |
2.432249822 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | (1−T)2 |
| 13 | C2 | 1−6T+pT2 |
good | 5 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 7 | C22 | 1−10T2+p2T4 |
| 11 | C22 | 1−18T2+p2T4 |
| 17 | C2 | (1+6T+pT2)2 |
| 19 | C22 | 1−34T2+p2T4 |
| 23 | C2 | (1−8T+pT2)2 |
| 29 | C2 | (1−6T+pT2)2 |
| 31 | C22 | 1+38T2+p2T4 |
| 37 | C22 | 1−58T2+p2T4 |
| 41 | C2 | (1−pT2)2 |
| 43 | C2 | (1+4T+pT2)2 |
| 47 | C22 | 1−90T2+p2T4 |
| 53 | C2 | (1+10T+pT2)2 |
| 59 | C22 | 1+78T2+p2T4 |
| 61 | C2 | (1+2T+pT2)2 |
| 67 | C22 | 1−130T2+p2T4 |
| 71 | C22 | 1−106T2+p2T4 |
| 73 | C22 | 1−82T2+p2T4 |
| 79 | C2 | (1+pT2)2 |
| 83 | C22 | 1−130T2+p2T4 |
| 89 | C2 | (1−pT2)2 |
| 97 | C2 | (1−pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.67742979012573206868120495160, −11.43657920178970095993615599365, −10.90079055281521496391493721133, −10.60843076004122407086763511364, −10.09034929326524269194283794390, −9.093025499803326964387221212222, −9.070456123070665916918025519974, −8.851926842741046661304085753495, −8.191062176165377562891932796109, −7.80979920227402879121197521368, −6.92755574353117200056568174982, −6.59823322750470748819114060489, −6.39192484901194424268575474235, −5.31681838809082653166237421121, −4.53540613555075457732054973802, −4.39367577433226799856671426843, −3.38471134054077733832054954836, −2.97713835290684456108862309652, −2.18071165988872254726303044855, −1.23341732032264811311135370976,
1.23341732032264811311135370976, 2.18071165988872254726303044855, 2.97713835290684456108862309652, 3.38471134054077733832054954836, 4.39367577433226799856671426843, 4.53540613555075457732054973802, 5.31681838809082653166237421121, 6.39192484901194424268575474235, 6.59823322750470748819114060489, 6.92755574353117200056568174982, 7.80979920227402879121197521368, 8.191062176165377562891932796109, 8.851926842741046661304085753495, 9.070456123070665916918025519974, 9.093025499803326964387221212222, 10.09034929326524269194283794390, 10.60843076004122407086763511364, 10.90079055281521496391493721133, 11.43657920178970095993615599365, 11.67742979012573206868120495160