L(s) = 1 | − 2·2-s + 2·3-s + 2·4-s + 4·5-s − 4·6-s + 6·7-s + 3·9-s − 8·10-s − 8·11-s + 4·12-s + 4·13-s − 12·14-s + 8·15-s − 4·16-s − 6·18-s − 6·19-s + 8·20-s + 12·21-s + 16·22-s + 8·23-s + 8·25-s − 8·26-s + 4·27-s + 12·28-s − 16·30-s + 2·31-s + 8·32-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 1.15·3-s + 4-s + 1.78·5-s − 1.63·6-s + 2.26·7-s + 9-s − 2.52·10-s − 2.41·11-s + 1.15·12-s + 1.10·13-s − 3.20·14-s + 2.06·15-s − 16-s − 1.41·18-s − 1.37·19-s + 1.78·20-s + 2.61·21-s + 3.41·22-s + 1.66·23-s + 8/5·25-s − 1.56·26-s + 0.769·27-s + 2.26·28-s − 2.92·30-s + 0.359·31-s + 1.41·32-s + ⋯ |
Λ(s)=(=(97344s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(97344s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
97344
= 26⋅32⋅132
|
Sign: |
1
|
Analytic conductor: |
6.20673 |
Root analytic conductor: |
1.57839 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 97344, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.849551160 |
L(21) |
≈ |
1.849551160 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+pT+pT2 |
| 3 | C1 | (1−T)2 |
| 13 | C2 | 1−4T+pT2 |
good | 5 | C22 | 1−4T+8T2−4pT3+p2T4 |
| 7 | C22 | 1−6T+18T2−6pT3+p2T4 |
| 11 | C22 | 1+8T+32T2+8pT3+p2T4 |
| 17 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 19 | C22 | 1+6T+18T2+6pT3+p2T4 |
| 23 | C2 | (1−4T+pT2)2 |
| 29 | C22 | 1−22T2+p2T4 |
| 31 | C22 | 1−2T+2T2−2pT3+p2T4 |
| 37 | C2 | (1+2T+pT2)(1+12T+pT2) |
| 41 | C22 | 1+8T+32T2+8pT3+p2T4 |
| 43 | C22 | 1−70T2+p2T4 |
| 47 | C22 | 1+4T+8T2+4pT3+p2T4 |
| 53 | C22 | 1−70T2+p2T4 |
| 59 | C22 | 1+4T+8T2+4pT3+p2T4 |
| 61 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 67 | C22 | 1−6T+18T2−6pT3+p2T4 |
| 71 | C22 | 1+8T+32T2+8pT3+p2T4 |
| 73 | C22 | 1+2T+2T2+2pT3+p2T4 |
| 79 | C22 | 1+38T2+p2T4 |
| 83 | C22 | 1+20T+200T2+20pT3+p2T4 |
| 89 | C22 | 1+4T+8T2+4pT3+p2T4 |
| 97 | C22 | 1−6T+18T2−6pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.59140910960777246297133487129, −11.03843255949456336318029551461, −10.58753583476993340298298772515, −10.55842106458327365195658126946, −10.11946079920542564162983275817, −9.484086352400828709565420899307, −8.913492157933406423399219753868, −8.507378753893691547015285373015, −8.250438907965759386514389555351, −8.121972295425459131221965947213, −7.12150507910982425926081735349, −7.07977206422364817342323710938, −6.04111746428192283709525017706, −5.31889933963681531072655976191, −4.97239467948513122547504169858, −4.48217423587517232634617200200, −3.14297076464566174802901790178, −2.40687491424041976776897269724, −1.82542213834283294130118914955, −1.49509579743978856137702165840,
1.49509579743978856137702165840, 1.82542213834283294130118914955, 2.40687491424041976776897269724, 3.14297076464566174802901790178, 4.48217423587517232634617200200, 4.97239467948513122547504169858, 5.31889933963681531072655976191, 6.04111746428192283709525017706, 7.07977206422364817342323710938, 7.12150507910982425926081735349, 8.121972295425459131221965947213, 8.250438907965759386514389555351, 8.507378753893691547015285373015, 8.913492157933406423399219753868, 9.484086352400828709565420899307, 10.11946079920542564162983275817, 10.55842106458327365195658126946, 10.58753583476993340298298772515, 11.03843255949456336318029551461, 11.59140910960777246297133487129