L(s) = 1 | − 3·9-s − 5·13-s + 5·25-s − 12·37-s − 11·49-s − 61-s − 27·73-s + 9·81-s + 15·117-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 12·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯ |
L(s) = 1 | − 9-s − 1.38·13-s + 25-s − 1.97·37-s − 1.57·49-s − 0.128·61-s − 3.16·73-s + 81-s + 1.38·117-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.923·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + ⋯ |
Λ(s)=(=(97344s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(97344s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
97344
= 26⋅32⋅132
|
Sign: |
−1
|
Analytic conductor: |
6.20673 |
Root analytic conductor: |
1.57839 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 97344, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1+pT2 |
| 13 | C2 | 1+5T+pT2 |
good | 5 | C22 | 1−pT2+p2T4 |
| 7 | C22 | 1+11T2+p2T4 |
| 11 | C2 | (1+pT2)2 |
| 17 | C22 | 1+pT2+p2T4 |
| 19 | C22 | 1+26T2+p2T4 |
| 23 | C2 | (1+pT2)2 |
| 29 | C22 | 1+pT2+p2T4 |
| 31 | C22 | 1+59T2+p2T4 |
| 37 | C2 | (1+T+pT2)(1+11T+pT2) |
| 41 | C22 | 1−pT2+p2T4 |
| 43 | C2 | (1−5T+pT2)(1+5T+pT2) |
| 47 | C2 | (1+pT2)2 |
| 53 | C22 | 1+pT2+p2T4 |
| 59 | C2 | (1+pT2)2 |
| 61 | C2 | (1−13T+pT2)(1+14T+pT2) |
| 67 | C22 | 1−109T2+p2T4 |
| 71 | C2 | (1+pT2)2 |
| 73 | C2 | (1+10T+pT2)(1+17T+pT2) |
| 79 | C2 | (1−17T+pT2)(1+17T+pT2) |
| 83 | C2 | (1+pT2)2 |
| 89 | C2 | (1+pT2)2 |
| 97 | C2 | (1−19T+pT2)(1+19T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.285859569587139990848089363651, −8.799834474592663518446554011854, −8.496156759644029146258936652067, −7.83514328877578084059175606366, −7.33486208797466574796310183246, −6.87754188197318428321351486880, −6.30121732037613294121156526239, −5.68781277044688638857092297285, −5.02630362326021944380565763766, −4.82295902328672719631606073357, −3.88161160984559063672153387352, −3.08086443998836126308130636598, −2.65306725856461153155748041157, −1.65340611096489772271595902239, 0,
1.65340611096489772271595902239, 2.65306725856461153155748041157, 3.08086443998836126308130636598, 3.88161160984559063672153387352, 4.82295902328672719631606073357, 5.02630362326021944380565763766, 5.68781277044688638857092297285, 6.30121732037613294121156526239, 6.87754188197318428321351486880, 7.33486208797466574796310183246, 7.83514328877578084059175606366, 8.496156759644029146258936652067, 8.799834474592663518446554011854, 9.285859569587139990848089363651