L(s) = 1 | − 3·9-s − 5·13-s + 5·25-s − 12·37-s − 11·49-s − 61-s − 27·73-s + 9·81-s + 15·117-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 12·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯ |
L(s) = 1 | − 9-s − 1.38·13-s + 25-s − 1.97·37-s − 1.57·49-s − 0.128·61-s − 3.16·73-s + 81-s + 1.38·117-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.923·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 97344 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 97344 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 3 | $C_2$ | \( 1 + p T^{2} \) |
| 13 | $C_2$ | \( 1 + 5 T + p T^{2} \) |
good | 5 | $C_2^2$ | \( 1 - p T^{2} + p^{2} T^{4} \) |
| 7 | $C_2^2$ | \( 1 + 11 T^{2} + p^{2} T^{4} \) |
| 11 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 17 | $C_2^2$ | \( 1 + p T^{2} + p^{2} T^{4} \) |
| 19 | $C_2^2$ | \( 1 + 26 T^{2} + p^{2} T^{4} \) |
| 23 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 29 | $C_2^2$ | \( 1 + p T^{2} + p^{2} T^{4} \) |
| 31 | $C_2^2$ | \( 1 + 59 T^{2} + p^{2} T^{4} \) |
| 37 | $C_2$ | \( ( 1 + T + p T^{2} )( 1 + 11 T + p T^{2} ) \) |
| 41 | $C_2^2$ | \( 1 - p T^{2} + p^{2} T^{4} \) |
| 43 | $C_2$ | \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \) |
| 47 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 53 | $C_2^2$ | \( 1 + p T^{2} + p^{2} T^{4} \) |
| 59 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 61 | $C_2$ | \( ( 1 - 13 T + p T^{2} )( 1 + 14 T + p T^{2} ) \) |
| 67 | $C_2^2$ | \( 1 - 109 T^{2} + p^{2} T^{4} \) |
| 71 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 73 | $C_2$ | \( ( 1 + 10 T + p T^{2} )( 1 + 17 T + p T^{2} ) \) |
| 79 | $C_2$ | \( ( 1 - 17 T + p T^{2} )( 1 + 17 T + p T^{2} ) \) |
| 83 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 89 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 97 | $C_2$ | \( ( 1 - 19 T + p T^{2} )( 1 + 19 T + p T^{2} ) \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.285859569587139990848089363651, −8.799834474592663518446554011854, −8.496156759644029146258936652067, −7.83514328877578084059175606366, −7.33486208797466574796310183246, −6.87754188197318428321351486880, −6.30121732037613294121156526239, −5.68781277044688638857092297285, −5.02630362326021944380565763766, −4.82295902328672719631606073357, −3.88161160984559063672153387352, −3.08086443998836126308130636598, −2.65306725856461153155748041157, −1.65340611096489772271595902239, 0,
1.65340611096489772271595902239, 2.65306725856461153155748041157, 3.08086443998836126308130636598, 3.88161160984559063672153387352, 4.82295902328672719631606073357, 5.02630362326021944380565763766, 5.68781277044688638857092297285, 6.30121732037613294121156526239, 6.87754188197318428321351486880, 7.33486208797466574796310183246, 7.83514328877578084059175606366, 8.496156759644029146258936652067, 8.799834474592663518446554011854, 9.285859569587139990848089363651