Properties

Label 4-312e2-1.1-c1e2-0-36
Degree $4$
Conductor $97344$
Sign $-1$
Analytic cond. $6.20673$
Root an. cond. $1.57839$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·9-s − 5·13-s + 5·25-s − 12·37-s − 11·49-s − 61-s − 27·73-s + 9·81-s + 15·117-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 12·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯
L(s)  = 1  − 9-s − 1.38·13-s + 25-s − 1.97·37-s − 1.57·49-s − 0.128·61-s − 3.16·73-s + 81-s + 1.38·117-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.923·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 97344 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 97344 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(97344\)    =    \(2^{6} \cdot 3^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(6.20673\)
Root analytic conductor: \(1.57839\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 97344,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + p T^{2} \)
13$C_2$ \( 1 + 5 T + p T^{2} \)
good5$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 + 11 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
17$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 + 59 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 + T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
41$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 13 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
67$C_2^2$ \( 1 - 109 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 10 T + p T^{2} )( 1 + 17 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 17 T + p T^{2} )( 1 + 17 T + p T^{2} ) \)
83$C_2$ \( ( 1 + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 19 T + p T^{2} )( 1 + 19 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.285859569587139990848089363651, −8.799834474592663518446554011854, −8.496156759644029146258936652067, −7.83514328877578084059175606366, −7.33486208797466574796310183246, −6.87754188197318428321351486880, −6.30121732037613294121156526239, −5.68781277044688638857092297285, −5.02630362326021944380565763766, −4.82295902328672719631606073357, −3.88161160984559063672153387352, −3.08086443998836126308130636598, −2.65306725856461153155748041157, −1.65340611096489772271595902239, 0, 1.65340611096489772271595902239, 2.65306725856461153155748041157, 3.08086443998836126308130636598, 3.88161160984559063672153387352, 4.82295902328672719631606073357, 5.02630362326021944380565763766, 5.68781277044688638857092297285, 6.30121732037613294121156526239, 6.87754188197318428321351486880, 7.33486208797466574796310183246, 7.83514328877578084059175606366, 8.496156759644029146258936652067, 8.799834474592663518446554011854, 9.285859569587139990848089363651

Graph of the $Z$-function along the critical line